Testing strict stationarity in GARCH models

Christian Francq CREST and University Lille 3 (joint work with Jean-Michel Zakoïan)

February 2, 2012, Karlsruhe

This work was supported by the ANR via the Project ECONOM&RISKS (ANR 2010 blanc 1804 03)

Testing strict stationarity of GARCH

Motivations

- Testing for strict stationarity of financial series:
 - Standard working hypotheses: the prices p_t are nonstationary and the returns $\epsilon_t = \log p_t / p_{t-1}$ are stationary.
 - Unit root tests are available for testing nonstationarity of (p_t) , but no tool for testing strict stationarity of (ϵ_t) .

→ Testing the stationarity of the price volatility in order to interpret the asymptotic effects of the economic shocks.

- The statistical inference of GARCH mainly rests on the strict stationarity assumption.
 - \hookrightarrow Checking if the usual inference tools are reliable.

Other motivations

Motivations

- Testing for strict stationarity of financial series:
 - Standard working hypotheses: the prices p_t are nonstationary and the returns $\epsilon_t = \log p_t / p_{t-1}$ are stationary.
 - Unit root tests are available for testing nonstationarity of (p_t) , but no tool for testing strict stationarity of (ϵ_t) .

→ Testing the stationarity of the price volatility in order to interpret the asymptotic effects of the economic shocks.

- The statistical inference of GARCH mainly rests on the strict stationarity assumption.
 - \hookrightarrow Checking if the usual inference tools are reliable.

Other motivations

Stylized Facts (Mandelbrot (1963))

CAC 40, from March 1, 1992 to April 30, 2009

▶ SP 500

Stylized Facts

Possible stationarity, unpredictability and volatility clustering of the returns

CAC 40 returns, from March 2, 1990 to February 20, 2009

Testing strict stationarity of GARCH

Stylized Facts

Dependence without correlation (warning: interpretation of the dotted lines)

Empirical autocorrelations of the CAC returns

▶ SP 500

• Other indices

Stylized Facts Correlation of the squares

Autocorrelations of the squares of the CAC returns

▶ SP 500

Stylized Facts Tail heaviness of the distributions

Density estimator for the CAC returns (normal in dotted line)

▶ SP 500

Main properties of daily stock returns

- Unpredictability of the returns (martingale difference assumption), but non-independence.
- Strong positive autocorrelations of the squares or of the absolute values (even for large lags).
- Volatility clustering.
- Leptokurticity of the marginal distribution.
- Decreases of prices have an higher impact on the future volatility than increases of the same magnitude (leverage effects).
- Seasonalities.

Volatility Models

Almost all the volatility models are of the form

 $\epsilon_t = \sigma_t \eta_t$

where (η_t) is iid (0,1), $\sigma_t > 0$, σ_t and η_t are independent.

For GARCH-type (Generalized Autoregressive Conditional Heteroskedasticity) models, $\sigma_t \in \sigma(\epsilon_{t-1}, \epsilon_{t-2}, ...)$.

See Bollerslev (Glossary to ARCH (GARCH), 2009) for an impressive list of more than one hundred GARCH-type models.

Definition: GARCH(p, q)

Definition (Engle (1982), Bollerslev (1986))

$$\begin{cases} \epsilon_t = \sigma_t \eta_t \\ \\ \sigma_t^2 = \omega_0 + \sum_{i=1}^q \alpha_{0i} \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_{0j} \sigma_{t-j}^2, \quad \forall t \in \mathbb{Z} \end{cases}$$

where

$$(\eta_t) \text{ iid}, \quad E\eta_t = 0, \quad E\eta_t^2 = 1, \quad \omega_0 > 0, \quad \alpha_{0i} \ge 0, \quad \beta_{0j} \ge 0.$$

GARCH(1,1) simulation

The previous GARCH(1,1) simulation resembles real financial series

CAC returns

Few references on QML estimation for GARCH:

- **ARCH**(*q*) or **GARCH**(1,1): Weiss (Econometric Theory, 1986), Lee and Hansen (Econometric Theory, 1994), Lumsdaine (Econometrica, 1996),
- **GARCH**(*p*, *q*): Berkes, Horváth and Kokoszka (Bernoulli, 2003), Francq and Zakoïan (Bernoulli, 2004), Hall and Yao (Econometrica, 2003), Mikosch and Straumann (Ann. Statist., 2006).
- More general stationary GARCH models: Straumann and Mikosch (Ann. Statist., 2006), Robinson and Zaffaroni (Ann. Statist., 2006), Bardet and Wintenberger (Ann. Statist., 2009).
- Explosive ARCH(1) and GARCH(1,1): Jensen and Rahbek (Econometrica, 2004 and Econometric Theory, 2004).

Outline

- Mode of Divergence of the Volatility in the Nonstationary Case
- Behaviour of the QMLE in the Stationary and Nonstationary Cases

2 Testing

- Testing GARCH Coefficients or the Strict Stationarity
- Asymptotic Local Powers (in the ARCH(1) case)
- Testing the Strict Stationarity of More General GARCH

3 Numerical Illustrations

- Finite Sample Properties of the QMLE
- The effect of a break
- Stock Market Returns

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Strict Stationarity of the GARCH(1,1) Model

GARCH(1,1) Model:

$$\begin{aligned} \epsilon_t &= \sqrt{h_t} \eta_t, \quad t = 1, 2, \dots \\ h_t &= \omega_0 + \alpha_0 \epsilon_{t-1}^2 + \beta_0 h_{t-1} \end{aligned}$$

with initial values ϵ_0 and $h_0 \ge 0$, where $\omega_0 > 0$, $\alpha_0, \beta_0 \ge 0$, and (η_t) iid (0,1) with $P(\eta_1^2 = 1) < 1$.

Necessary and Sufficient Strict Stationarity Condition:

 $\gamma_0 < 0$,

where $\gamma_0 = E \log (\alpha_0 \eta_1^2 + \beta_0)$.

Testing strict stationarity of GARCH

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Strict Stationarity of the GARCH(1,1) Model

GARCH(1,1) Model:

$$\begin{aligned} \epsilon_t &= \sqrt{h_t} \eta_t, \quad t = 1, 2, \dots \\ h_t &= \omega_0 + \alpha_0 \epsilon_{t-1}^2 + \beta_0 h_{t-1} \end{aligned}$$

with initial values ϵ_0 and $h_0 \ge 0$, where $\omega_0 > 0$, $\alpha_0, \beta_0 \ge 0$, and (η_t) iid (0,1) with $P(\eta_1^2 = 1) < 1$.

Necessary and Sufficient Strict Stationarity Condition:

 $\gamma_0 < 0,$

where $\gamma_0 = E \log (\alpha_0 \eta_1^2 + \beta_0)$.

Probabilistic framework (Nelson (1990), Klüppelberg, Lindner and Maller (2004))

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, & t = 1, 2, \dots \\ h_t = \omega_0 + a_0(\eta_t)h_{t-1}, & \text{with } a_0(x) = \alpha_0 x^2 + \beta_0 \text{ and initial values.} \end{cases}$$

 γ₀ < 0: the effect of the initial values vanishes asymptotically:

$$h_t - \sigma_t^2 \rightarrow 0$$
 almost surely as $t \rightarrow \infty$,

where σ_t^2 is a stationary process involving the infinite past.

• $\gamma_0 > 0$: $h_t \to \infty$, almost surely as $t \to \infty$. • $\gamma_0 = 0$: $h_t \to \infty$, in probability as $t \to \infty$.

Probabilistic framework (Nelson (1990), Klüppelberg, Lindner and Maller (2004))

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, & t = 1, 2, \dots \\ h_t = \omega_0 + a_0(\eta_t)h_{t-1}, & \text{with } a_0(x) = \alpha_0 x^2 + \beta_0 \text{ and initial values.} \end{cases}$$

 γ₀ < 0: the effect of the initial values vanishes
 asymptotically:

$$h_t - \sigma_t^2 \rightarrow 0$$
 almost surely as $t \rightarrow \infty$,

where σ_t^2 is a stationary process involving the infinite past.

• $\gamma_0 > 0$: $h_t \to \infty$, almost surely as $t \to \infty$. • $\gamma_0 = 0$: $h_t \to \infty$, in probability as $t \to \infty$.

Probabilistic framework (Nelson (1990), Klüppelberg, Lindner and Maller (2004))

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, & t = 1, 2, \dots \\ h_t = \omega_0 + a_0(\eta_t)h_{t-1}, & \text{with } a_0(x) = \alpha_0 x^2 + \beta_0 \text{ and initial values.} \end{cases}$$

 γ₀ < 0: the effect of the initial values vanishes
 asymptotically:

$$h_t - \sigma_t^2 \rightarrow 0$$
 almost surely as $t \rightarrow \infty$,

where σ_t^2 is a stationary process involving the infinite past.

- $\gamma_0 > 0$: $h_t \to \infty$, almost surely as $t \to \infty$.
- $\gamma_0 = 0$: $h_t \to \infty$, in probability as $t \to \infty$.

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Stationarity and explosiveness

Nonstationarity in GARCH \Leftrightarrow explosiveness

$$h_t o \infty \Rightarrow \epsilon_t^2 o \infty$$
 when $E |\log \eta_t^2| < \infty$

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Interpretation in terms of persistence of shocks

Almost surely, for any i

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i}=0$$

when $\gamma_0 < 0$ (temporary effect),

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i} = \operatorname{sign}(\eta_i) \times \infty$$

when $\gamma_0 > 0$ (explosive effect),

 $\limsup_{t \to \infty} \frac{\partial h_t}{\partial |\eta_i|} = +\infty \quad \text{and} \quad \liminf_{t \to \infty} \frac{\partial h_t}{\partial |\eta_i|} = 0$

when $\gamma_0 = 0$ (butterfly effect).

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Interpretation in terms of persistence of shocks

Almost surely, for any i

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i}=0$$

when $\gamma_0 < 0$ (temporary effect),

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i} = \operatorname{sign}(\eta_i) \times \infty$$

when $\gamma_0 > 0$ (explosive effect),

$$\limsup_{t \to \infty} \frac{\partial h_t}{\partial |\eta_i|} = +\infty \quad \text{and} \quad \liminf_{t \to \infty} \frac{\partial h_t}{\partial |\eta_i|} = 0$$
when $\gamma_0 = 0$ (butterfly effect)

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Interpretation in terms of persistence of shocks

Almost surely, for any i

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i}=0$$

when $\gamma_0 < 0$ (temporary effect),

$$\lim_{t\to\infty}\frac{\partial h_t}{\partial \eta_i} = \operatorname{sign}(\eta_i) \times \infty$$

when $\gamma_0 > 0$ (explosive effect),

۲

$$\limsup_{t\to\infty} \frac{\partial h_t}{\partial |\eta_i|} = +\infty \quad \text{and} \quad \liminf_{t\to\infty} \frac{\partial h_t}{\partial |\eta_i|} = 0$$

when $\gamma_0 = 0$ (butterfly effect).

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Definition of the standard (unrestricted) QMLE

 $\theta = (\omega, \alpha, \beta)' \in \Theta$ compact subset of $(0, \infty)^3$.

A QMLE is any measurable solution of

$$\hat{\theta}_n = (\hat{\omega}_n, \hat{\alpha}_n, \hat{\beta}_n)' = \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^n \left\{ \frac{\epsilon_t^2}{\sigma_t^2(\theta)} + \log \sigma_t^2(\theta) \right\},$$

where
$$\sigma_t^2(\theta) = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2(\theta)$$
 for $t = 1, \dots, n$ (+ init. val.).

Remark: This is not the constrained estimator

studied by Jensen and Rahbek (2004, 2006):

$$(\hat{\alpha}_n^c(\omega), \hat{\beta}_n^c(\omega))' = \arg\min_{(\alpha, \beta) \in \Theta_{\alpha, \beta}} \frac{1}{n} \sum_{t=1}^n \left\{ \frac{\epsilon_t^2}{\sigma_t^2(\theta)} + \log \sigma_t^2(\theta) \right\}$$

for **fixed** ω .

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Definition of the standard (unrestricted) QMLE

 $\theta = (\omega, \alpha, \beta)' \in \Theta$ compact subset of $(0, \infty)^3$.

A QMLE is any measurable solution of

$$\hat{\theta}_n = (\hat{\omega}_n, \hat{\alpha}_n, \hat{\beta}_n)' = \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^n \left\{ \frac{\epsilon_t^2}{\sigma_t^2(\theta)} + \log \sigma_t^2(\theta) \right\},$$

where
$$\sigma_t^2(\theta) = \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2(\theta)$$
 for $t = 1, ..., n$ (+ init. val.).

Remark: This is not the constrained estimator

studied by Jensen and Rahbek (2004, 2006):

$$(\hat{\alpha}_n^c(\omega), \hat{\beta}_n^c(\omega))' = \arg\min_{(\alpha, \beta) \in \Theta_{\alpha, \beta}} \frac{1}{n} \sum_{t=1}^n \left\{ \frac{\epsilon_t^2}{\sigma_t^2(\theta)} + \log \sigma_t^2(\theta) \right\}$$

for **fixed** ω .

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Consistency of the QMLE of (α_0, β_0)

• Stationary case: if $\gamma_0 < 0$ and $\beta < 1$ for all $\theta \in \Theta$,

 $\hat{ heta}_n o heta_0 = (\omega_0, lpha_0, eta_0)'$ a.s. as $n o \infty$.

• Nonstationary case I: if $\gamma_0 > 0$ and $P(\eta_1 = 0) = 0$,

 $(\hat{\alpha}_n, \beta_n) \to (\alpha_0, \beta_0)$ a.s. as $n \to \infty$,

Idea of the proof

Nonstationary case II: if γ₀ = 0, P(η₁ = 0) = 0 and there exists p > 1 such that β < ||1/a₀(η₁)||⁻¹_p for all θ ∈ Θ,

 $(\hat{\alpha}_n, \hat{\beta}_n) \to (\alpha_0, \beta_0)$ in probability as $n \to \infty$.

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Consistency of the QMLE of (α_0, β_0)

• Stationary case: if $\gamma_0 < 0$ and $\beta < 1$ for all $\theta \in \Theta$,

$$\hat{ heta}_n o heta_0 = (\omega_0, lpha_0, eta_0)'$$
 a.s. as $n o \infty$.

• Nonstationary case I: if $\gamma_0 > 0$ and $P(\eta_1 = 0) = 0$,

 $(\hat{\alpha}_n, \hat{\beta}_n) \to (\alpha_0, \beta_0)$ a.s. as $n \to \infty$,

Idea of the proof

Nonstationary case II: if γ₀ = 0, P(η₁ = 0) = 0 and there exists p > 1 such that β < ||1/a₀(η₁)||⁻¹_p for all θ ∈ Θ,

 $(\hat{\alpha}_n, \hat{\beta}_n) \to (\alpha_0, \beta_0)$ in probability as $n \to \infty$.

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Consistency of the QMLE of (α_0, β_0)

• Stationary case: if $\gamma_0 < 0$ and $\beta < 1$ for all $\theta \in \Theta$,

$$\hat{ heta}_n o heta_0 = (\omega_0, lpha_0, eta_0)'$$
 a.s. as $n o \infty.$

• Nonstationary case I: if $\gamma_0 > 0$ and $P(\eta_1 = 0) = 0$,

$$(\hat{\alpha}_n, \hat{\beta}_n) \to (\alpha_0, \beta_0)$$
 a.s. as $n \to \infty$,

Idea of the proof

Nonstationary case II: if γ₀ = 0, P(η₁ = 0) = 0 and there exists p > 1 such that β < ||1/a₀(η₁)||⁻¹_p for all θ ∈ Θ,

 $(\hat{\alpha}_n, \hat{\beta}_n) \to (\alpha_0, \beta_0)$ in probability as $n \to \infty$.

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Contrary to the QMLE, the constrained QMLE of (α_0, β_0) is not universally consistent

When $\gamma_0 < 0$ and $E\epsilon_t^4 < \infty$, if $\omega \neq \omega_0$ the constrained QMLE

 $(\hat{\alpha}_n^c(\omega), \hat{\beta}_n^c(\omega))$ does not converge in probability to (α_0, β_0) .

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Inconsistency of the QMLE of ω_0 in the case $\gamma_0 > 0$

Assume $\eta_t \sim \mathcal{N}(0, 1)$ and Θ contains two arbitrarily close points $\theta = (\omega, \alpha, \beta)$ and $\theta^* = (\omega^*, \alpha, \beta)$ such that $E \log(\alpha \eta_t^2 + \beta) > 0$ and $\omega \neq \omega^*$. Then there exists **no consistent estimator** of $\theta_0 \in \Theta$.

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Asymptotic normality of the QMLE

Stationary case: if γ₀ < 0, κ_η = Eη₁⁴ ∈ (1,∞), θ₀ belongs to the interior Θ of Θ and β < 1 for all θ ∈ Θ,

$$\sqrt{n}\left(\hat{\theta}_n-\theta_0\right) \xrightarrow{d} \mathcal{N}\left\{0,(\kappa_\eta-1)J^{-1}\right\}, \quad \text{as } n \to \infty.$$

• Nonstationary cases I and II (under a technical assumption): if $\gamma_0 \ge 0$, $\kappa_\eta \in (1, \infty) E |\log \eta_1^2| < \infty$ and $\theta_0 \in \overset{\circ}{\Theta}$,

$$\sqrt{n}\left(\hat{\alpha}_n - \alpha_0, \hat{\beta}_n - \beta_0\right) \xrightarrow{d} \mathcal{N}\left\{0, (\kappa_\eta - 1)I^{-1}\right\}, \quad \text{as } n \to \infty.$$

▶ Forms of *I* and *J*

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Technical Assumption required in the case $\gamma_0 = 0$:

When t tends to infinity,

$$E\left(\frac{1}{1+Z_1+Z_1Z_2+\cdots+Z_1\ldots Z_{t-1}}\right) = o\left(\frac{1}{\sqrt{t}}\right)$$

where $Z_t = \alpha_0 \eta_t^2 + \beta_0$.

Remark: $\gamma_0 = E \log Z_t = 0$ entails $EZ_t \ge 1$, so

$$E\left(1+Z_1+Z_1Z_2+\cdots+Z_1\ldots Z_{t-1}\right)\geq t.$$

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Asymptotic Variance of $(\hat{\alpha}_n, \hat{\beta}_n)$

$$\sqrt{n}\left(\hat{\alpha}_n - \alpha_0, \hat{\beta}_n - \beta_0\right)' \xrightarrow{d} \mathcal{N}\left\{0, (\kappa_\eta - 1)I_*^{-1}\right\},\$$

with

$$I_* = \begin{cases} J_{\alpha\beta,\alpha\beta} - J_{\alpha\beta,\omega}J_{\omega,\omega}^{-1}J_{\omega,\alpha\beta}, & \text{ when } \gamma_0 < 0 \\ \\ I, & \text{ when } \gamma_0 \ge 0. \end{cases}$$

When $\gamma_0 < 0$, a natural empirical estimator of I_* is

$$\hat{I}_* = \hat{J}_{\alpha\beta,\alpha\beta} - \hat{J}_{\alpha\beta,\omega}\hat{J}_{\omega,\omega}^{-1}\hat{J}_{\omega,\alpha\beta}.$$

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Asymptotic Variance of $(\hat{\alpha}_n, \hat{\beta}_n)$

$$\sqrt{n}\left(\hat{\alpha}_n - \alpha_0, \hat{\beta}_n - \beta_0\right)' \xrightarrow{d} \mathcal{N}\left\{0, (\kappa_\eta - 1)I_*^{-1}\right\},\$$

with

$$I_* = \begin{cases} J_{\alpha\beta,\alpha\beta} - J_{\alpha\beta,\omega}J_{\omega,\omega}^{-1}J_{\omega,\alpha\beta}, & \text{ when } \gamma_0 < 0 \\ \\ I, & \text{ when } \gamma_0 \ge 0. \end{cases}$$

When $\gamma_0 < 0$, a natural empirical estimator of I_* is

$$\hat{I}_* = \hat{J}_{\alpha\beta,\alpha\beta} - \hat{J}_{\alpha\beta,\omega}\hat{J}_{\omega,\omega}^{-1}\hat{J}_{\omega,\alpha\beta}.$$

Mode of Divergence of the Volatility in the Nonstationary Case Behaviour of the QMLE in the Stationary and Nonstationary Cases

Universal Estimator of the Asymptotic Variance of $(\hat{\alpha}_n, \hat{\beta}_n)$

Let $\hat{\kappa}_{\eta} = n^{-1} \sum_{t=1}^{n} \hat{\eta}_{t}^{4}$ be the empirical kurtosis of η_{t} .

Under the previous assumptions, whatever γ_0 , we have

$$\hat{\kappa}_{\eta} \to \kappa_{\eta}.$$

Moreover, as $n \to \infty$,

- if $\gamma_0 < 0$: $\hat{I}_* \to I_*$ a.s
- if $\gamma_0 > 0$: $\hat{I}_* \to I$ a.s.
- if $\gamma_0 = 0$: $\hat{I}_* \to I$ in probability.

Therefore, $(\hat{\kappa}_{\eta} - 1)\hat{I}_{*}^{-1}$ is always a consistent estimator of the asymptotic variance of the QMLE of (α_{0}, β_{0}) .

Testing strict stationarity of GARCH
Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)

- Testing GARCH Coefficients or the Strict Stationarity
- Asymptotic Local Powers (in the ARCH(1) case)
- Testing the Strict Stationarity of More General GARCH

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Testing (α_0, β_0) without imposing $\gamma_0 < 0$

Consider the testing problem

 $H_0: a\alpha_0 + b\beta_0 \le c$ against $H_1: a\alpha_0 + b\beta_0 > c$,

where a, b, c are given numbers.

Under the previous assumptions,

the test defined by the critical region

$$\left\{\frac{\sqrt{n}(a\hat{\alpha}_n+b\hat{\beta}_n-c)}{\sqrt{(\hat{\kappa}_\eta-1)(a,b)\hat{I}_*^{-1}(a,b)'}} > \Phi^{-1}(1-\underline{\alpha})\right\}$$

has the asymptotic significance level $\underline{\alpha}$ and is consistent.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Testing for Strict Stationarity and for Nonstationarity

Consider the testing problems

and

 $H_0: \gamma_0 < 0$ against $H_1: \gamma_0 \ge 0$, $H_0: \gamma_0 \ge 0$ against $H_1: \gamma_0 < 0$.

Under the previous assumptions, with $\sigma_u^2 = \operatorname{var} \log(\alpha_0 \eta_1^2 + \beta_0)$ and $\hat{\gamma}_n := n^{-1} \sum_{t=1}^n \log(\hat{\alpha}_n \hat{\eta}_t^2 + \hat{\beta}_n)$, we have

$$\sqrt{n}(\hat{\gamma}_n - \gamma_0) \xrightarrow{d} \mathcal{N}(0, \sigma_{\gamma}^2)$$

where $\sigma_{\gamma}^2 = \begin{cases} \sigma_u^2 + \text{positive constant} & \text{when } \gamma_0 < 0, \\ \sigma_u^2 & \text{when } \gamma_0 \ge 0. \end{cases}$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Testing for Strict Stationarity and for Nonstationarity

Consider the testing problems

and

 $H_0: \gamma_0 < 0$ against $H_1: \gamma_0 \ge 0,$ $H_0: \gamma_0 \ge 0$ against $H_1: \gamma_0 < 0.$

Under the previous assumptions, with $\sigma_u^2 = \operatorname{var} \log(\alpha_0 \eta_1^2 + \beta_0)$ and $\hat{\gamma}_n := n^{-1} \sum_{t=1}^n \log(\hat{\alpha}_n \hat{\eta}_t^2 + \hat{\beta}_n)$, we have

$$\sqrt{n}(\hat{\gamma}_n - \gamma_0) \xrightarrow{d} \mathcal{N}(0, \sigma_{\gamma}^2)$$

where $\sigma_{\gamma}^2 = \begin{cases} \sigma_u^2 + \text{positive constant} & \text{when } \gamma_0 < 0, \\ \sigma_u^2 & \text{when } \gamma_0 \ge 0. \end{cases}$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Testing the Null of Strict Stationarity

For testing

$$H_0: \gamma_0 < 0$$
 against $H_1: \gamma_0 \ge 0$,

the test

$$\mathbf{C}^{\mathrm{ST}} = \left\{ T_n := \sqrt{n} \frac{\hat{\gamma}_n}{\hat{\sigma}_u} > \Phi^{-1} (1 - \underline{\alpha}) \right\}$$

has its asymptotic significance level bounded by $\underline{\alpha}$, has the asymptotic probability of rejection $\underline{\alpha}$ under $\gamma_0 = 0$, and is consistent for all $\gamma_0 > 0$.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Testing the Null of Nonstationarity

For testing

$$H_0: \gamma_0 \ge 0$$
 against $H_1: \gamma_0 < 0$,

the test

$$\mathbf{C}^{\mathrm{NS}} = \left\{ T_n = \sqrt{n} \frac{\hat{\gamma}_n}{\hat{\sigma}_u} < \Phi^{-1}(\underline{\alpha}) \right\}$$

has its asymptotic significance level bounded by $\underline{\alpha}$, has the asymptotic probability of rejection $\underline{\alpha}$ under $\gamma_0 = 0$, and is consistent for all $\gamma_0 < 0$.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Regularity assumptions on η_t

Assume that η_t has a density *f* with third-order derivatives, that

$$\lim_{|y|\to\infty} y^2 f'(y) = 0,$$

and that for some positive constants K and δ

$$\begin{aligned} |y| \left| \frac{f'}{f}(y) \right| + y^2 \left| \left(\frac{f'}{f} \right)'(y) \right| + y^2 \left| \left(\frac{f'}{f} \right)''(y) \right| &\leq K \left(1 + |y|^{\delta} \right), \\ E \left| \eta_1 \right|^{2\delta} &< \infty. \end{aligned}$$

These regularity conditions entail the existence of the Fisher information for scale

$$\iota_f = \int \left\{ 1 + yf'(y)/f(y) \right\}^2 f(y) dy < \infty.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

LAN under Strict Stationarity Drost and Klaassen (1997)

Around $\theta_0 \in \stackrel{\,\,{}_\circ}{\Theta}$, let a sequence of local parameters

$$\theta_n = \theta_0 + \tau_n / \sqrt{n},$$

where (τ_n) is a bounded sequence of \mathbb{R}^2 . Under $\gamma_0 < 0$, it is known that the log-likelihood ratio

$$\Lambda_{n,f}(heta_n, heta_0) = \log rac{L_{n,f}(heta_n)}{L_{n,f}(heta_0)}$$

satisfies the LAN property

$$\Lambda_{n,f}(\theta_n,\theta_0) = \tau'_n S_{n,f}(\theta_0) - \frac{1}{2} \tau'_n \Im_f \tau_n + o_{P_{\theta_0}}(1), \quad S_{n,f}(\theta_0) \stackrel{d}{\longrightarrow} \mathcal{N}\left\{0,\Im_f\right\}$$

under P_{θ_0} as $n \to \infty$.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

LAN without Stationarity Constraints

When $\theta_0 \in \overset{\circ}{\Theta}$, and under the regularity assumptions on f, we have the **LAN property (regardless of the sign of** γ_0). When $\gamma_0 \geq 0$, the Fisher information is the degenerate matrix

$$\Im_f = rac{\iota_f}{4} \left(egin{array}{cc} 0 & 0 \ 0 & lpha_0^{-2} \end{array}
ight).$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

LAP of the Test of $H_0: \alpha_0 \leq \alpha^*$

The test defined by the critical region

$$\mathbf{C}^{\alpha^*} = \left\{ \frac{\sqrt{n}(\hat{\alpha}_n - \alpha^*)}{\sqrt{(\hat{\kappa}_\eta - 1)/\hat{I}_*}} > \Phi^{-1}(1 - \underline{\alpha}) \right\}$$

where

$$\hat{I}_* = \hat{\mu}_n(2,2) - \frac{\hat{\mu}_n^2(1,2)}{\hat{\mu}_n(0,2)}, \quad \text{with } \hat{\mu}_n(p,q) = \frac{1}{n} \sum_{t=1}^n \frac{\epsilon_t^{2p}}{(\hat{\omega}_n + \hat{\alpha}_n \epsilon_t^2)^q},$$

has the asymptotic significance level $\underline{\alpha}$ and is consistent.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

LAP of the Test of $H_0: \alpha_0 \leq \alpha^*$

Denote by $P_{n,\tau}^{\alpha^*}$, where $\tau = (\tau_1, \tau_2)'$, the distribution of the observations $(\epsilon_1, \ldots, \epsilon_n)$ when the parameter is of the form

$$\theta_n^{\alpha^*} = (\omega_0, \alpha^*)' + \tau/\sqrt{n}, \quad \tau_2 > 0.$$

The LAP of the C^{α^*} -test is given by

$$\lim_{n \to \infty} P_{n,\tau}^{\alpha^*} \left(\mathbf{C}^{\alpha^*} \right) = \Phi \left\{ \frac{\tau_2}{\sqrt{(\kappa_\eta - 1)/I_*}} - \Phi^{-1}(1 - \underline{\alpha}) \right\},\,$$

where $I_* = 1/\alpha^{*2}$ when $E \log \alpha^* \eta_1^2 \ge 0$ and I_* is more complicated when $E \log \alpha^* \eta_1^2 < 0$.

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimality of the Test of $H_0: \alpha_0 \leq \alpha^*$

The optimal test of $H_0: \alpha_0 \leq \alpha^*$ has the LAP

$$au_2 o \Phi\left(rac{ au_2}{\sqrt{4/\iota_f I_*}} - \Phi^{-1}(1-\underline{lpha})
ight).$$

The test C^{α^*} is optimal iff

$$f(y) = \frac{a^a}{\Gamma(a)} e^{-ay^2} |y|^{2a-1}, \quad a > 0, \quad \Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimality of the Test of $H_0: \alpha_0 \leq \alpha^*$

The optimal test of $H_0: \alpha_0 \leq \alpha^*$ has the LAP

$$au_2 o \Phi\left(rac{ au_2}{\sqrt{4/\iota_f I_*}} - \Phi^{-1}(1-\underline{lpha})
ight).$$

The test C^{α^*} is optimal iff

$$f(y) = \frac{a^a}{\Gamma(a)} e^{-ay^2} |y|^{2a-1}, \quad a > 0, \quad \Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Densities of η_t for which the test C^{α^*} is asymptotically locally optimal

Testing strict stationarity of GARCH

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimal LAP (in full line) and LAP of the C^{α^*} -test (in dotted line) for testing $H_0: \alpha_0 < \alpha^*$ when $\eta_t \sim St_{\nu}$ (standardized), with α^* such that $\gamma_0 = 0$ when $\alpha_0 = \alpha^*$. The C^{α^*} -test is optimal in the gaussian case

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Local Asymptotic Powers of the Stationarity Tests

Let $\theta_0 = (\omega_0, \alpha_0)'$ such that $\alpha_0 = \exp(-E \log \eta_t^2)$.

Let $\tau = (\tau_1, \tau_2)'$. Denote by $P_{n,\tau}$ the distribution of the observations $(\epsilon_1, \ldots, \epsilon_n)$ when the parameter is

$$\left(\omega_0 + \frac{\tau_1}{\sqrt{n}}, \, \alpha_0 + \frac{\tau_2}{\sqrt{n}}\right)'$$

The LAP of the stationarity tests are given by

$$\lim_{n\to\infty} P_{n,\tau}\left(\mathbf{C}^{\mathrm{ST}}\right) = \Phi\left\{\frac{\tau_2}{\alpha_0\sigma_u} - \Phi^{-1}(1-\underline{\alpha})\right\}, \quad \tau_2 > 0$$

and

1

$$\lim_{n\to\infty} P_{n,\tau}\left(\mathbf{C}^{\mathsf{NS}}\right) = \Phi\left\{\Phi^{-1}(\underline{\alpha}) - \frac{\tau_2}{\alpha_0\sigma_u}\right\}, \quad \tau_2 < 0.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimal Local Asymptotic Power of the Strict Stationarity Test

The optimal ST-test of $H_0: \gamma_0 < 0$ has the LAP

$$au_2 \to \Phi\left(rac{ au_2}{\sqrt{4lpha_0^2/\iota_f}} - \Phi^{-1}(1-\underline{lpha})
ight)$$

The test C^{ST} (or C^{NS}) is optimal iff

$$f(y) = \frac{1}{2\sqrt{|\delta|\pi}e^{-\delta/4}}e^{\frac{(\log|y|)^2}{\delta}}y^{-2}, \quad \delta < 0.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimal Local Asymptotic Power of the Strict Stationarity Test

The optimal ST-test of $H_0: \gamma_0 < 0$ has the LAP

$$au_2 o \Phi\left(rac{ au_2}{\sqrt{4lpha_0^2/\iota_f}} - \Phi^{-1}(1-\underline{lpha})
ight)$$

The test C^{ST} (or C^{NS}) is optimal iff

$$f(\mathbf{y}) = \frac{1}{2\sqrt{|\delta|\pi}e^{-\delta/4}}e^{\frac{(\log|\mathbf{y}|)^2}{\delta}}\mathbf{y}^{-2}, \quad \delta < 0.$$

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1) Testing Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Numerical Illustrations

Densities of η_t for which the CST (or C^{NS}) test is asymptotically locally optimal

Testing strict stationarity of GARCH

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1) Testing

Numerical Illustrations

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Optimal LAP (in full line) and LAP of the CST-test (in dotted line) when $\eta_t \sim St_{\nu}$ (standardized). The CST-test is not optimal in the gaussian case

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Application to Non Linear GARCH Augmented GARCH models

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, \quad t = 1, 2, \dots \\ h_t = \omega(\eta_{t-1}) + a(\eta_{t-1})h_{t-1} \end{cases}$$

with $\omega : \mathbb{R} \to [\underline{\omega}, +\infty)$, for some $\underline{\omega} > 0$, and $a : \mathbb{R} \to \mathbb{R}^+$.

- Standard GARCH(1,1) when $\omega(\cdot) = \omega$ and $a(x) = \alpha_0 x^2 + \beta_0$;
- GJR model when

 $a(x) = \alpha_1(\max\{x, 0\})^2 + \alpha_2(\min\{x, 0\})^2 + \beta_0.$

Strict stationarity condition:

 $\Gamma:=E\log a(\eta_t)<0.$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Application to Non Linear GARCH Augmented GARCH models

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, \quad t = 1, 2, \dots \\ h_t = \omega(\eta_{t-1}) + a(\eta_{t-1})h_{t-1} \end{cases}$$

with $\omega: \mathbb{R} \to [\underline{\omega}, +\infty)$, for some $\underline{\omega} > 0$, and $a: \mathbb{R} \to \mathbb{R}^+$.

- Standard GARCH(1,1) when $\omega(\cdot) = \omega$ and $a(x) = \alpha_0 x^2 + \beta_0$;
- GJR model when

$$a(x) = \alpha_1(\max\{x,0\})^2 + \alpha_2(\min\{x,0\})^2 + \beta_0.$$

Strict stationarity condition:

 $\Gamma:=E\log a(\eta_t)<0.$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Application to Non Linear GARCH Augmented GARCH models

$$\begin{cases} \epsilon_t = \sqrt{h_t}\eta_t, \quad t = 1, 2, \dots \\ h_t = \omega(\eta_{t-1}) + a(\eta_{t-1})h_{t-1} \end{cases}$$

with $\omega: \mathbb{R} \to [\underline{\omega}, +\infty)$, for some $\underline{\omega} > 0$, and $a: \mathbb{R} \to \mathbb{R}^+$.

- Standard GARCH(1,1) when $\omega(\cdot) = \omega$ and $a(x) = \alpha_0 x^2 + \beta_0$;
- GJR model when

 $a(x) = \alpha_1(\max\{x,0\})^2 + \alpha_2(\min\{x,0\})^2 + \beta_0.$

Strict stationarity condition:

 $\Gamma:=E\log a(\eta_t)<0.$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Behavior of the test statistics when the GARCH(1,1) is misspecified

Under some regularity assumptions,

the statistics built with **the standard GARCH(1,1) model** satisfy:

If $\Gamma > 0$ then

$$\hat{\gamma}_n \to \Gamma$$
, and $\hat{\sigma}_u^2 \to \sigma_*^2 > 0$, *a.s.*

If $\Gamma < 0$ then

$$\hat{\gamma}_n \to \Gamma^* < 0, \quad \text{and} \quad \hat{\sigma}_u^2 \to \operatorname{Var}\log\left\{\alpha^* \frac{\epsilon_t^2}{\sigma_t^2(\theta^*)} + \beta^*\right\} > 0, \quad a.s.$$

Testing GARCH Coefficients or the Strict Stationarity Asymptotic Local Powers (in the ARCH(1) case) Testing the Strict Stationarity of More General GARCH

Behavior of the Standard GARCH(1,1) Strict Stationarity Tests Applied to Augmented GARCH Processes

Under the previous assumptions, as $n \to \infty$,

if $\Gamma > 0$ then

$$P(\mathbf{C}^{\mathbf{NS}}) \to 0 \text{ and } P(\mathbf{C}^{\mathbf{ST}}) \to 1,$$

if $\Gamma < 0$ then

$$P(\mathbf{C}^{\mathbf{ST}}) \to 0 \quad \text{and} \quad P(\mathbf{C}^{\mathbf{NS}}) \to 1,$$

if $\Gamma = 0$ then

$$P(\mathbf{C}^{\mathbf{ST}}) \rightarrow ?$$
 and $P(\mathbf{C}^{\mathbf{NS}}) \rightarrow ?$.

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)

2 Testing

Numerical Illustrations

- Finite Sample Properties of the QMLE
- The effect of a break
- Stock Market Returns

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1) Testing

Numerical Illustrations

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Bias and MSE for the QMLE over 1, 000 replications $\eta_t \sim \mathcal{N}(0, 1)$ and $\theta_0 = (1, 0.5, 0.6)$ (ST) or $\theta_0 = (1, 0.7, 0.6)$ (NS)

	ST (γ	$v_0 = -0$.038)	NS (NS ($\gamma_0=0.078$)			
	ω	α	β	ω	α	eta		
n = 200								
Bias	-0.34	0.01	0.01	-0.51	0.02	0.02		
MSE	1.10	0.02	0.02	3.77	0.03	0.03		
n = 4000								
Bias	-0.03	0.00	0.00	-0.51	0.00	0.00		
MSE	0.03	0.00	0.00	4.95	0.00	0.00		

Testing strict stationarity of GARCH

 $H_0: \beta_0 \leq 0.7$ Against $H_1: \beta_0 > 0.7$ Nominal level 5%, $\eta_t \sim St_7$ and $\alpha_0 = 0.2$ ((α_0, β_0) = (0.2, 0.7) corresponding to a stationary process)

	β_0	0.61	0.64	0.67	0.70	0.73	0.76	0.79
n = 500		3.5	4.3	5.2	8.9	12.6	26.8	49.6
n = 2,000		0.3	0.6	1.8	6.8	18.3	53.1	91.5
n = 4,000		0.2	0.3	1.0	5.5	27.7	76.9	99.0

 $H_0: \beta_0 \leq 0.7$ Against $H_1: \beta_0 > 0.7$ Nominal level 5%, $\eta_t \sim St_7$ and $\alpha_0 = 0.5$ ((α_0, β_0) = (0.5, 0.7) corresponding to a non stationary process)

	β_0	0.61	0.64	0.67	0.70	0.73	0.76	0.79
n = 500		0.3	0.5	2.8	9.9	25.5	47.7	67.2
n = 2,000		0.0	0.0	0.1	6.2	41.6	81.8	97.0
n = 4,000		0.0	0.0	0.1	6.1	61.0	96.2	99.7

Relative frequency of rejection for the test C^{ST} The parameter (α_0, β_0) = (0.2575, 0.8) corresponds to $\gamma_0 = 0$

	α_0	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
n = 500		0.0	0.0	0.1	7.5	27.8	61.4	75.2
n = 2,000		0.0	0.0	0.0	6.3	67.8	98.6	99.9
n = 4,000		0.0	0.0	0.0	5.3	92.4	100.0	100.0

Relative frequency of rejection for the test C^{ST} As the previous table, but the DGP is a GJR model, $\alpha_1 = 0.2575$ corresponding to $\Gamma = 0$

	α_1	0.18	0.20	0.22	0.2575	0.28	0.30	0.31
n = 500		0.1	0.1	1.1	7.8	15.8	32.7	35.2
n = 2,000		0.0	0.0	0.1	6.6	31.7	65.8	77.4
n = 4,000		0.0	0.0	0.0	5.6	45.1	87.7	96.1

Other simulation experiments

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)

2 Testing

Numerical Illustrations

- Finite Sample Properties of the QMLE
- The effect of a break
- Stock Market Returns

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

A stationary GARCH followed by another stationary GARCH

$$h_t = 1 + 0.5\epsilon_t^2 + 0.5h_{t-1}$$
 for $t = 1, \dots, 500$ and
 $h_t = 1 + 0.05\epsilon_t^2 + 0.95h_{t-1}$ for $t = 501, \dots, 1000$

 $\hat{\alpha}_n = 0.229, \quad \hat{\beta}_n = 0.808, \quad \hat{\gamma}_n = -0.442 \text{ (p-val=0.670)}$

A stationary GARCH followed by an explosive GARCH

 $\hat{\alpha}_n = 0.124, \quad \hat{\beta}_n = 0.898, \quad \hat{\gamma}_n = 2.088 \text{ (p-val=}0.018)$

An explosive GARCH followed by a stationary GARCH

$$h_t = 0.001 + 0.14\epsilon_t^2 + 0.91h_{t-1}$$
 for $t = 1, \dots, 500$ and $h_t = 10 + 0.05\epsilon_t^2 + 0.89h_{t-1}$ for $t = 501, \dots, 1000$

 $\hat{\alpha}_n = 0.182, \quad \hat{\beta}_n = 0.850, \quad \hat{\gamma}_n = 0.981 \text{ (p-val=}0.163)$

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)

2 Testing

Numerical Illustrations

- Finite Sample Properties of the QMLE
- The effect of a break
- Stock Market Returns
Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Strict stationarity test statistic T_n on daily indices (from 1990 to 2009) Asymptotically, $T_n \sim \mathcal{N}(0, 1)$ when $\gamma_0 = 0$, tends to $-\infty$ when $\gamma_0 < 0$, and tends to $+\infty$ when $\gamma_0 > 0$

CAC	DAX	DJA	FTSE	Nasdaq	Nikkei	SMI	SP500
-14.5	-15.8	-15.1	-10.7	-8.5	-15.4	-23	-11.1

T_n and p-values of the non stationarity test for individual stock returns

	ICGN	MCBF	KVA	BTC	CCME
п	928	869	1222	911	469
$\hat{\alpha}_n$	0.559	0.024	0.147	0.500	0.416
$\hat{\beta}_n$	0.713	0.979	0.926	0.766	0.748
T_n	-1.597	0.100	1.209	0.052	0.123
p-val	0.055	0.540	0.887	0.521	0.549

Graph of an explosive series of returns

Log-returns (in %) of the MCBF stock series

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)	Finite Sample Properties of the QMLE
Testing	The effect of a break
Numerical Illustrations	Stock Market Returns
Numerical Illustrations	Stock Market Returns

Conclusion

- For a GARCH(1,1), the standard QMLE of (α_0, β_0) is CAN, even when $\gamma_0 \ge 0$.
- It is impossible to consistently estimate ω_0 when $\gamma_0 > 0$.
- A specific behavior is obtained at the boundary of the stationarity region: when $\gamma_0 = 0$.

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)	Finite Sample Properties of the QMLE
Testing	The effect of a break
Numerical Illustrations	Stock Market Returns
	Stock Market Heldins

Conclusion

- For a GARCH(1,1), the standard QMLE of (α_0, β_0) is CAN, even when $\gamma_0 \ge 0$.
- It is impossible to consistently estimate ω_0 when $\gamma_0 > 0$.
- A specific behavior is obtained at the boundary of the stationarity region: when $\gamma_0 = 0$.

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1)	Finite Sample Properties of the QMLE
Testing	The effect of a break
Numerical Illustrations	Stock Market Returns
Numerical Illustrations	Stock Market Returns

Conclusion

- For a GARCH(1,1), the standard QMLE of (α_0, β_0) is CAN, even when $\gamma_0 \ge 0$.
- It is impossible to consistently estimate ω_0 when $\gamma_0 > 0$.
- A specific behavior is obtained at the boundary of the stationarity region: when γ₀ = 0.

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

- It is possible to consistently estimate the asymptotic variance of (â_n, β̂_n), without knowing if γ₀ < 0 or not.
- It is therefore possible to test the value of (α₀, β₀) even in the nonstationary case.
- It is also possible to develop strict stationarity tests (shocks effect and inference validity).
- The strict stationarity tests developed for the standard GARCH(1,1) also work for more general GARCH

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

- It is possible to consistently estimate the asymptotic variance of (â_n, β̂_n), without knowing if γ₀ < 0 or not.
- It is therefore possible to test the value of (α₀, β₀) even in the nonstationary case.
- It is also possible to develop strict stationarity tests (shocks effect and inference validity).
- The strict stationarity tests developed for the standard GARCH(1,1) also work for more general GARCH

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

- It is possible to consistently estimate the asymptotic variance of (â_n, β̂_n), without knowing if γ₀ < 0 or not.
- It is therefore possible to test the value of (α₀, β₀) even in the nonstationary case.
- It is also possible to develop strict stationarity tests (shocks effect and inference validity).
- The strict stationarity tests developed for the standard GARCH(1,1) also work for more general GARCH

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

- It is possible to consistently estimate the asymptotic variance of (â_n, β̂_n), without knowing if γ₀ < 0 or not.
- It is therefore possible to test the value of (α₀, β₀) even in the nonstationary case.
- It is also possible to develop strict stationarity tests (shocks effect and inference validity).
- The strict stationarity tests developed for the standard GARCH(1,1) also work for more general GARCH

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Stylized Facts (Mandelbrot (1963))

Non stationarity of the prices

S&P 500, from March 2, 1992 to April 30, 2009

✓ Return

Stylized Facts Possible stationarity of the returns

S&P 500 returns, from March 2, 1992 to April 30, 2009

Stylized Facts Volatility clustering

CAC 40 returns, from January 2, 2008 to April 30, 2009

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Stylized Facts

Conditional heteroskedasticity (compatible with marginal homoscedasticity and even stationarity)

Stylized Facts

Dependence without correlation (see FZ 2009 for the interpretation of the red lines)

Empirical autocorrelations of the S&P 500 returns

Return

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Stylized Facts

Dependence without correlation (significance bands under the GARCH(1,1) assumption)

Empirical autocorrelations of daily stock returns

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Stylized Facts

Dependence without correlation (the significance bands in red are estimated nonparametrically)

Empirical autocorrelations of daily stock returns

Stylized Facts Correlation of the squares

Autocorrelations of the squares of the S&P 500 returns GReturn

Asymptotic Behavior of the QMLE of an Explosive GARCH(1,1) Testing Numerical Illustrations Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Stylized Facts Tail heaviness of the distributions

Density estimator for the S&P 500 returns (normal in dotted line)

Stylized Facts

Decreases of prices have an higher impact on the future volatility than increases of the same magnitude

Table: Autocorrelations of tranformations of the CAC returns ϵ

h	1	2	3	4	5	6
$\hat{\rho}(\epsilon_{t-h}^+, \epsilon_t)$	0.03	0.07	0.07	0.08	0.08	0.12
$\hat{\rho}(-\epsilon_{t-h}^{-}, \epsilon_t)$	0.18	0.20	0.22	0.18	0.21	0.15

▶ SP 500

Stylized Facts

Decreases of prices have an higher impact on the future volatility than increases of the same magnitude

Table: Autocorrelations of tranformations of the S&P 500 returns ϵ

h	1	2	3	4	5	6
$\hat{ ho}_\epsilon(h)$	-0.06	-0.07	0.03	-0.02	-0.04	0.01
$\hat{ ho}_{ \epsilon }(h)$	0.26	0.34	0.29	0.32	0.36	0.32
$\hat{\rho}(\epsilon_{t-h}^+, \epsilon_t)$	0.06	0.12	0.11	0.14	0.15	0.16
$\hat{\rho}(-\epsilon_{t-h}^{-}, \epsilon_t)$	0.25	0.28	0.23	0.24	0.28	0.23

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Idea of the proof in the ARCH(1) case

The QMLE minimizes $Q_n(\theta) = \frac{1}{n} \sum_{t=1}^n \frac{\sigma_t^2(\theta_0)\eta_t^2}{\sigma_t^2(\theta)} + \log \sigma_t^2(\theta)$ with $\sigma_t^2(\theta) = \omega + \alpha \epsilon_{t-1}^2$. Since $\epsilon_{t-1}^2 \to \infty$ a.s.,

$$\frac{\sigma_t^2(\theta_0)}{\sigma_t^2(\theta)} \to \frac{\alpha_0}{\alpha},$$

and we have

$$Q_n(\theta) - Q_n(\theta_0) \rightarrow \frac{\alpha_0}{\alpha} - 1 + \log \frac{\alpha}{\alpha_0},$$

which is minimized at $\alpha = \alpha_0$.

▲ Return

Asymptotic variance of the QMLE

When $\gamma_0 < 0$, the asymptotic variance is $(\kappa_\eta - 1)J^{-1}$ with

$$J = E_{\infty} \left(\frac{1}{h_t^2} \frac{\partial \sigma_t^2}{\partial \theta} \frac{\partial \sigma_t^2}{\partial \theta'}(\theta_0) \right).$$

When $\gamma_0 \ge 0$, the asymptotic variance is $(\kappa_\eta - 1)I^{-1}$ with

$$I = \begin{pmatrix} \frac{1}{\alpha_0^2} & \frac{\nu_1}{\alpha_0\beta_0(1-\nu_1)} \\ \frac{\nu_1}{\alpha_0\beta_0(1-\nu_1)} & \frac{(1+\nu_1)\nu_2}{\beta_0^2(1-\nu_1)(1-\nu_2)} \end{pmatrix} \text{ with } \nu_i = E\left(\frac{\beta_0}{\alpha_0\eta_1^2+\beta_0}\right)^i.$$

I Return

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

(Initial) Motivations

- Complement the CAN results obtained by Jensen and Rahbek (2004, Econometrica and 2006, ET) for a constrained QML estimator.
- Correct the false impression that "GARCH models can be consistently estimated without any stationarity constraint."

▲ Return

(Initial) Motivations

- Complement the CAN results obtained by Jensen and Rahbek (2004, Econometrica and 2006, ET) for a constrained QML estimator.
- Correct the false impression that "GARCH models can be consistently estimated without any stationarity constraint."

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

Is the simulated model stationary ?

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

Yes: $\eta_t \sim St_7$ (standardized) $h_t = 0.001 + 0.2\epsilon_t^2 + 0.8h_{t-1}$ $\hat{\alpha}_n = 0.300, \quad \hat{\beta}_n = 0.746, \quad \hat{\gamma}_n = -3.44$ (p-val=0.9997)

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

Is the simulated model stationary ?

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

Yes: $\eta_t \sim St_5$ (standardized) $h_t = 0.001 + 0.93\epsilon_t^2 + 0.5h_{t-1}$ $\hat{\alpha}_n = 0.732$, $\hat{\beta}_n = 0.504$, $\hat{\gamma}_n = -3.01$ (p-val=0.9987)

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

Is the simulated model stationary ?

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

GARCH Simulation

No: $\eta_t \sim \mathcal{N}(0, 1)$ (standardized) $h_t = 0.001 + 0.12\epsilon_t^2 + 0.9h_{t-1}$ $\hat{\alpha}_n = 0.080, \quad \hat{\beta}_n = 0.931, \quad \hat{\gamma}_n = 1.72$ (p-val=0.042)

Finite Sample Properties of the QMLE The effect of a break Stock Market Returns

Score in the Explosive ARCH(1) Case

Since
$$\sigma_t^2(\theta) = \omega + \alpha \epsilon_{t-1}^2$$
 and $\epsilon_{t-1}^2 \to \infty$,
$$\frac{1}{\sigma_t^2(\theta_0)} \frac{\partial \sigma_t^2(\theta_0)}{\partial \alpha} \to \frac{1}{\alpha}$$

and the score

$$\frac{1}{\sqrt{n}}\sum_{t=1}^{n}(1-\eta_t^2)\frac{1}{\alpha_0}+o_P(1)\xrightarrow{d}\mathcal{N}\left(0,\frac{\kappa_\eta-1}{\alpha_0^2}\right).$$