
Journal of Multivariate Analysis 173 (2019) 181–203

Contents lists available at ScienceDirect

Journal ofMultivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Bivariate integer-autoregressive processwith an application
tomutual fund flows
Serge Darolles a, Gaëlle Le Fol a, Yang Lu b,∗, Ran Sun a

a Université Paris-Dauphine, PSL Research University, CNRS, DRM, Finance, 75016 Paris, France
b Université Paris 13, Sorbonne Paris Cité, CNRS, CEPN, 93430, Villetaneuse, France

a r t i c l e i n f o

Article history:
Received 15 August 2018
Available online 28 February 2019

JEL classification:
C32
C53

AMS 2010 subject classifications:
primary 60G10
secondary 60E05

Keywords:
Compound autoregressive process
Memory persistence
Mutual funds
Non-linear forecasting

a b s t r a c t

We propose a new family of bivariate nonnegative integer-autoregressive (BINAR)
models for count process data. We first generalize the existing BINAR(1) model by
allowing for dependent thinning operators and arbitrary innovation distribution. The
extended family allows for intuitive interpretation, as well as tractable aggregation
and stationarity properties. We then introduce higher order BINAR(p) and BINAR(∞)
dynamics to accommodate more flexible serial dependence patterns. So far, the literature
has regarded such models as computationally intractable. We show that the extended
BINAR family allows for closed-form predictive distributions at any horizons and for
any values of p, which significantly facilitates non-linear forecasting and likelihood
based estimation. Finally, a BINAR(∞) model with memory persistence is applied to
open-ended mutual fund purchase and redemption order counts.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Nonnegative low count processes have been widely used in domains such as marketing [4], economics [3], finance [22],
insurance [20] and beyond, ever since the seminal work of McKenzie [34]. Our interest in this paper lies in the monitoring
of the liquidity risk of an open-ended mutual fund (MF). An MF channels investors’ cash investment into less liquid
assets, and is thus structurally vulnerable to liquidity risk. This risk has recently received much attention from the
regulators [1,10], but its quantification and management remain difficult. Indeed, from the modeling point of view, the
liquidity risk is quite different from traditional market risks in that it involves the daily counts of redemption and purchase
orders, which are (i) most of the time low integers or zero, but also have a non-null probability of taking mildly large
values; (ii) both cross-sectionally and serially dependent, with significant heteroscedasticity.

Recently, the MF industry has started to record purchase and redemption order count data separately. This allows to
distinguish auto-correlation effects and cross-effects between the two count processes, which have different economic
interpretations. For instance, the clustering of the redemption counts corresponds to fund run, whereas a fund manager
usually reacts to past redemptions by seeking new investors in order to stabilize the fund size, leading to a positive
feedback effect between past redemption and current purchase counts. Therefore, a bivariate count analysis can be of
great interest to understand clients’ behavior and the manager’s reaction to exogenous liquidity shock.
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Yet the literature on bivariate count processes is still in its infancy. The benchmark approach is the first order Bivariate
INteger-valued AutoRegressive model [27,36], which assumes that, for each time t ,

X1,t = α11 ◦ X1,t−1 + α12 ◦ X2,t−1 + ϵ1,t ,

X2,t = α21 ◦ X1,t−1 + α22 ◦ X2,t−1 + ϵ2,t ,
(1)

where given Xt−1 = (X1,t−1, X2,t−1)⊤, the binomial thinning operators are defined as follows: for each i, j ∈ {1, 2},
the variable αi,j ◦ Xj,t−1 is binomial with size Xj,t−1 and success probability αi,j ∈ [0, 1]. Moreover, these variables are
conditionally independent, and are also independent of the i.i.d. innovation sequence ϵt = (ϵ1,t , ϵ2,t )⊤.

This approach has several drawbacks. First, the conditional independence assumption between the thinning operators
restricts significantly the dependence feature. Second, so far only Latour [27] has considered higher-order models, but he
suggests to base the estimation and forecasting solely on conditional expectation, i.e., as if the observations are continuous,
and nothing is said about the empirical performance of this approach. This is due to the fact that the term structure of
predictive distributions of higher-order BINAR process is yet to be derived and is so far (wrongly) considered intractable.
These downsides seriously limit their usefulness for risk management and forecasting purposes.

Besides BINAR processes, other non-thinning-based models have been introduced. Quoreshi [37] and Livsey et al.
[29] proposed parameter-driven models with flexible (auto-)correlation, but the likelihood estimation and forecasting
in these models are way too cumbersome to be feasible. Another popular approach is the bivariate INGARCH model [28],
which assumes that given the past, X1,t and X2,t follow some simple (say, Poisson) distributions, with parameters that
are exponentially weighted averages of past observations. Then the contemporaneous conditional dependence between
X1,t and X2,t is captured by a copula [2,13,22]. The downsides of the latter approach are that (i) it is sometimes unclear
whether such processes are strictly stationary and how memory persistence can be introduced; (ii) forecasting formulas
beyond the conditional expectation necessitate numerical integration; (iii) it remains an open question as to whether
the copula is identified in the count data setting, as discussed, e.g., in [16,17]. Recently, some alternative, non-INGARCH
models were proposed in [9,21,40], and they allow for rather flexible serial dependence. However, it is computationally
difficult to extend them to models of arbitrary orders. For instance, the model of [9], as well as INGARCH models, are
necessarily infinite-order Markov, whereas that of [21] is first-order Markov. Further, [9,21] assume ex ante the conditional
distributions of X1,t and X2,t given the past to be equi- (resp. over-) dispersed.

The paper that is closest to ours is that of Scotto et al. [40]. While these authors are mainly interested in bounded
counts, they mention in their conclusion some possible extensions of model (1), which they conjecture to be appropriate
for unbounded count data. In this paper, we show that one of these extensions has indeed tractable properties, even after
extension to higher-order cases.

More precisely, we contribute to the BINAR literature in two ways. First, we extend model (1), called independent
BINAR(1) henceforth, by introducing (positively or negatively) dependent thinning operators and arbitrary innovation
distribution. We show that the process belongs to the compound autoregressive (CaR) family, and possesses intuitive
aggregation and stationarity properties. We then go on to clarify that in this family of BINAR models, the predictive
distributions at various horizons are easily computable via a matrix-based algorithm. This largely facilitates likelihood-
based inference and non-linear forecasting, especially when it comes to the prediction of extreme events. Second, we
extend our model to higher-order dependent BINAR(p) and BINAR(∞) processes, which can better capture slowly decaying
serial correlation patterns.

The paper is organized as follows. The dependent BINAR(1) model is introduced in Section 2 and extended in Section 3
to higher-order BINAR(p) and BINAR(∞) models. The predictive distributions are computed in Section 4 and the model
is applied in Section 5 to forecast the counts of share purchase and redemption of an MF. Section 6 contains concluding
remarks. Proofs and technical details are gathered in Appendix A.

2. Dependent BINAR(1) process

2.1. The dynamic specification

Definition 1. We say that the bivariate count process Xt = (X1,t , X2,t )⊤ with domain N2
= {0, 1, . . .}2 is dependent

BINAR(1) if it has the stochastic representation

∀t

[
X1,t
X2,t

]
=

X1,t−1∑
i=1

[
Z1,i,t
Z2,i,t

]
+

X2,t−1∑
j=1

[
Z3,j,t
Z4,j,t

]
+

[
ϵ1,t
ϵ2,t

]
, (2)

where, given Xt−1,

(i) for i, j, t varying, random vectors (Z1,i,t , Z2,i,t )⊤, (Z3,j,t , Z4,j,t )⊤, (ϵ1,t , ϵ2,t )⊤ are mutually independent copies of
(Z1, Z2)⊤, (Z3, Z4)⊤, and (ϵ1, ϵ2)⊤, respectively.

(ii) Couples (Z1, Z2)⊤ and (Z3, Z4)⊤ are mutually independent and bivariate Bernoulli distributed. That is, they have
Bernoulli marginal distribution with success probabilities, viz.[

Pr(Z1 = 1) Pr(Z3 = 1)
Pr(Z2 = 1) Pr(Z4 = 1)

]
=

[
α11, α12
α21, α22

]
= A,
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where all the entries of the matrix A are nonnegative, whereas the two joint probabilities are respectively

Pr(Z1 = Z2 = 1) = q1, Pr(Z3 = Z4 = 1) = q2.

(iii) The innovations ϵt are independent of Xt−1,Xt−2, . . ., and i.i.d. across t . Moreover, they are nonnegative and have
finite variance.

The bivariate Bernoulli distribution is first introduced in [42] (see also [31]), and is recently used in [40] to model
bounded count processes. In order for it to be well defined, its parameters have to satisfy the following constraint.

Lemma 1 ([23], p. 210). The parameters (α11, α12, α21, α22, q1, q2) of the bivariate Bernoulli distribution can take any values
satisfying the following two inequalities:

max(α11 + α21 − 1, 0) ≤ q1 ≤ min(α11, α21), (3)

max(α12 + α22 − 1, 0) ≤ q2 ≤ min(α12, α22). (4)

Note that the covariance between Z1 and Z2 (resp. Z3 and Z4) is q1 −α11α21. In particular, if q1 = max(α11 +α21 −1, 0),
then the covariance is nonpositive; if q1 = min(α11, α21), the covariance is nonnegative; if q1 = α11α21 and q2 = α12α22,
we get the independent BINAR(1) model (1).

Birth–death-immigration interpretation. Let us temporarily assume that X1,t and X2,t count individuals of type 1 and type 2
at time t , respectively. A type j1 ∈ {1, 2} individual produces a type j2 ∈ {1, 2} off-spring with marginal probability αj1,j2 ,
and joint probability qj1 . Then the population of type j ∈ {1, 2} at time t + 1 is composed of such off-springs, plus ϵj,t+1
immigrants of type j. In particular, if q1 = α11α21 and q2 = α12α22, the productions of the two types of off-springs are
independent events. If instead q1 = q2 = 0, the productions are mutually exclusive, i.e., each individual can only produce
up to one off-spring.

2.2. Conditional distribution

2.2.1. First two conditional moments
Since we have

E(Xt |Xt−1) = AXt−1 + E(ϵt ), (5)

we abbreviate model (2) into

Xt = A(q1, q2) ◦ Xt−1 + ϵt ,

where the operator A(q1, q2)◦ is linear and will be called the dependent matrix thinning operator. The conditional
covariance matrix is[

var(X1,t |Xt−1) ∗

cov(X1,t , X2,t |Xt−1) var(X2,t |Xt−1)

]
= γϵ + X1,t−1γ12 + X2,t−1γ34,

where γϵ , γ12, γ34 are the covariance matrices of (ϵ1,t , ϵ2,t ), (Z1,t , Z2,t ) and (Z3,t , Z4,t ), respectively, viz.

γ12 =

[
α11(1 − α11) ∗

q1 − α11α21 α21(1 − α21)

]
, γ34 =

[
α12(1 − α12) ∗

q2 − α12α22 α22(1 − α22)

]
, (6)

and the conditional correlation between X1,t and X2,t is

corr(X1,t , X2,t |Xt−1) =
cov(ϵ1,t , ϵ2,t ) + X1,t−1cov(Z1, Z2) + X2,t−1cov(Z3, Z4)√{

var(ϵ1,t ) + X1,t−1var(Z1) + X2,t−1var(Z3)
}{

var(ϵ2,t ) + X1,t−1var(Z2) + X2,t−1var(Z4)
} .

In the above equation, the denominator of the right-hand side does not depend on q1 or q2, whereas the numerator
is increasing in q1 and q2. In the independent BINAR(1) model with q1 = α11α21, q2 = α22α12, the above correlation
coefficient is (in absolute value) no larger than corr(ϵ1,t , ϵ2,t ), and becomes small whenever X1,t−1 and/or X2,t−1 are large.
Thus, the conditional heteroscedasticity cannot be well captured. This downside exists also in several other competing
bivariate count process models. For instance, in the bivariate Poisson autoregression of [28], the conditional correlation
coefficient goes to zero when X1,t and X2,t are large. In copula-based bivariate count processes [22], this conditional
correlation coefficient can only be computed numerically and it is not clear how it behaves when components of Xt−1 are
large; in our model, however, when both X1,t−1 and X2,t−1 are large, the conditional correlation is approximately

corr(X1,t , X2,t |Xt−1) ≈
X1,t−1cov(Z1, Z2) + X2,t−1cov(Z3, Z4)√{

X1,t−1var(Z1) + X2,t−1var(Z3)
}{

X1,t−1var(Z2) + X2,t−1var(Z4)
} ,

which can be closer to 1 (resp. −1) if q1 and q2 are close to their upper (resp. lower) bounds.



184 S. Darolles, G.L. Fol, Y. Lu et al. / Journal of Multivariate Analysis 173 (2019) 181–203

Finally, if ϵ1,t , ϵ2,t have Poisson distributions, then both components are conditionally under-dispersed, viz.

∀j∈{1,2} var(Xjt |Xt−1) ≤ E(Xjt |Xt−1).

This differs from the models of [9,21], which are conditionally equi-dispersed and over-dispersed, respectively. In general,
by leaving the distribution of ϵt unconstrained, the BINAR(1) family allows for flexible conditional dispersion.

2.2.2. Conditional pgf
The dynamics of the process Xt is characterized by its conditional probability generating function (pgf), which is given,

for any u, v ≥ 0, by

E(uX1,t vX2,t |Xt−1) =
{
E(uZ1vZ2 )

}X1,t−1
{
E(uZ3vZ4 )

}X2,t−1E(uϵ1,t vϵ2,t )

= {a1(u, v)}X1,t−1{a2(u, v)}X2,t−1b(u, v), (7)

where b(u, v) is the pgf of (ϵ1,t , ϵ2,t ) and

a1(u, v) = q1uv + (α11 − q1)u + (α21 − q1)v + (1 + q1 − α11 − α21),
a2(u, v) = q2uv + (α12 − q2)u + (α22 − q2)v + (1 + q2 − α12 − α22),

are the pgf of (Z1, Z2) and (Z3, Z4), respectively. This conditional pgf is exponentially affine in Xt−1. Such a process is called
compound autoregressive (CaR) [11]. A remarkable property of such processes is that the multiple-step-ahead conditional
pgf remains exponentially affine in Xt−1.

Proposition 1. In model (2), we have, for any horizon h ≥ 0 and any u, v ≥ 0,

E(uX1,t+h−1vX2,t+h−1 |Xt−1) = {a(h)1 (u, v)}X1,t−1{a(h)2 (u, v)}X2,t−1b(h)(u, v), (8)

where functions a(h)1 (u, v), a(h)2 (u, v) and b(h)(u, v) are defined by the recursion:

∀u,v≥0 ∀h∈N a(h+1)
1 (u, v) = 1 + α11{a

(h)
1 (u, v) − 1} + α21{a

(h)
2 (u, v) − 1} + q1{a

(h)
1 (u, v) − 1}{a(h)2 (u, v) − 1},

a(h+1)
2 (u, v) = 1 + α12{a

(h)
1 (u, v) − 1} + α22{a

(h)
2 (u, v) − 1} + q2{a

(h)
1 (u, v) − 1}{a(h)2 (u, v) − 1},

b(h+1)(u, v) = b(h)(u, v)b{a(h)1 (u, v), a(h)2 (u, v)},

with initial conditions a(0)1 (u, v) = u, a(0)2 (u, v) = v, and b(0)(u, v) = 1.

The proof (by induction) is straightforward and thus omitted. This proposition implies that for each h ≥ 1, a(h)1 (u, v)
and a(h)2 (u, v) are polynomials of degree 2h−1 in both arguments, except when q1 = q2 = 0. More precisely, we have the
following result.

Corollary 1. If q1 = q2 = 0, then[
a(h)1 (u, v) − 1

a(h)2 (u, v) − 1

]
= A⊤

[
a(h−1)
1 (u, v) − 1

a(h−1)
2 (u, v) − 1

]
= (A⊤)h

[
u − 1
v − 1

]
. (9)

Thus in this case a(h)1 (u, v) and a(h)2 (u, v) are affine instead of polynomial. In other words, the conditional pgf of {A(0, 0)◦}
(h)Xt−1

given Xt−1 at any horizon h has the same functional form as that of Ah(0, 0) ◦ Xt−1, or equivalently {A(0, 0)◦}
(h)

= Ah(0, 0)◦
is still a dependent matrix thinning operator, where {A(0, 0)◦}

(h) is the h-time iteration of operator A(0, 0)◦. As a consequence,
in terms of temporal aggregation, when observed at a lower frequency of h, the process (Xth)t is still BINAR(1).

Remark 1. Corollary 1 is easily explained by the birth-immigration interpretation. If q1 = q2 = 0, each individual
produces at most one off-spring in the next period, and thus at most one off-spring at horizon h ≥ 2. Hence the identity
{A(0, 0)◦}

(h)
= Ah(0, 0)◦. Moreover, this constrained model has also a similar queuing interpretation as the univariate

INAR(1) model [39]. More precisely, we can think of X1,t , X2,t as the number of individuals in queues 1 and 2 at date t ,
respectively. Both queues have infinite capacity. At date t+1, ϵ1,t+1 (resp. ϵ2,t+1) new customers join queue 1 (resp. queue
2), whereas X1,t (resp. X2,t ) customers that were in queue 1 (resp. queue 2) at date t can either stay in the same queue,
or go to the other queue, or leave the queues after being served, with probabilities α11, α21 and 1 − α11 − α21 (resp. α22,
α12 and 1 − α22 − α12).

Remark 2. Note that the literature (see Theorem 2.8 in [5] as well as Eq. (15) in [36]) usually claims that in the
independent BINAR model where q1 = α11α21, q2 = α21α22, the composite operator {A(q1, q2)◦}

(h) is equal to the bivariate
thinning operator Ah(q1,h, q2,h)◦, where Ah = Ah and q1,h (resp. q2,h) is the products of the two entries of the first (resp.
second) column of Ah. Then these authors deduce that the h-step-ahead conditional pgf still has the CaR form of Eq. (8),
but with functions a(h)1 and a(h)2 being affine rather than higher-order polynomial. From the above analysis, we can see
that this assertion is incorrect.
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Notice also that Eq. (8) corresponds to the decomposition

Xt+h−1 = {A(q1, q2)◦}
(h)Xt−1 + {A(q1, q2)◦}

(h−1)ϵt + · · · + A(q1, q2) ◦ ϵt+h−2 + ϵt+h−1,

where the additive terms on the right-hand side are conditionally independent given Xt−1, with conditional pgf’s
a(h)1 (u, v)X1,t−1a(h)2 (u, v)X2,t−1 for {A(q1, q2)◦}

(h)Xt−1, b{a(h−1)
1 (u, v), a(h−1)

2 (u, v)} for {A(q1, q2)◦}
(h−1)ϵt ,. . . , and b(u, v) for

ϵt+h−1, respectively.

Example 1. Let us consider the case where ϵ1,t , ϵ2,t are mutually independent, Poisson P(λ1),P(λ2) distributed,
respectively. We have b(u, v) = exp

{
λ1(u − 1) + λ2(v − 1)

}
, and the pgf of A(q1, q2) ◦ ϵt+h−2 is

b{a1(u, v), a2(u, v)} = exp
[
λ1{a1(u, v) − 1} + λ2{a2(u, v) − 1}

]
= exp

[
λ1

{
(α11 − q1)(u − 1) + (α21 − q1)(v − 1) + q1(uv − 1)

}
+ λ2

{
(α12 − q2)(u − 1) + (α22 − q2)(v − 1) + q2(uv − 1)

}]
= exp

{
m1(u − 1) + m2(v − 1) + m3(uv − 1)

}
, (10)

where m1 = λ1(α11 − q1)+λ2(α12 − q2), m2 = λ2(α21 − q1)+λ2(α22 − q2), m3 = λ1q1 +λ2q2. This is the pgf of a bivariate
(dependent) Poisson distribution BP(m1,m2,m3) with trivariate reduction [31] and its correlation coefficient is

ρ1 =
m3

√
(m1 + m3)(m2 + m3)

=
λ1q1 + λ2q2

√
(λ1α11 + λ2α21)(λ1α12 + λ2α22)

,

which is nonnegative, and increasing in q1 and q2. As a consequence, the conditional distribution Xt+1|Xt−1 is BP(m1 +

λ1,m2 + λ2,m3).
Under the same assumption, the pgf of {A(q1, q2)◦}

(2)ϵt+h−3 is

b{a(2)1 (u, v), a(2)2 (u, v)} = exp
[
λ1{a

(2)
1 (u, v) − 1} + λ2{a

(2)
2 (u, v) − 1}

]
, (11)

which is exponentially quadratic in u and v. The family of distributions with exponentially quadratic pgf is called bivariate
Hermite (BH). It nests the bivariate Poisson as special case and is closed under convolution [25]. In particular, the
conditional distribution Xt+1|Xt−1 still belongs to the BH family.

2.3. Cross-sectional aggregation

In the previous subsection, we have analyzed the frequency aggregation property of the BINAR(1) process. Brännäs
et al. [6] also considered the cross-sectional aggregation of univariate INAR(1) models. Let us now extend this analysis to
the dependent BINAR(1) models. Consider the sum process

X1,t + X2,t =

X1,t−1∑
j=1

(Z1,j,t + Z2,j,t ) +

X2,t−1∑
j=1

(Z3,j,t + Z4,j,t ) + ϵ1,t + ϵ2,t . (12)

We can check that variables Z1,j,t+Z2,j,t and Z3,j,t+Z4,j,t are Bernoulli with parameters α11+α21 and α12+α22, respectively,
if and only if they only take values 0 and 1, i.e., when q1 = q2 = 0. Nevertheless, given X1,t−1 + X2,t−1, the sum

X1,t−1∑
j=1

(Z1,j,t + Z2,j,t ) +

X2,t−1∑
j=1

(Z3,j,t + Z4,j,t )

is generically not binomial, except when α11 + α21 = α12 + α22, in which case (12) becomes

X1,t + X2,t =

X1,t−1+X2,t−1∑
j=1

(Z1,j,t + Z2,j,t ) + ϵ1,t + ϵ2,t , (13)

where Z1,j,t +Z2,j,t , j varying are independent of Xt−1,Xt−2, . . . and the innovation ϵ1,t +ϵ2,t is independent of the variables
Z1,j,t + Z2,j,t . To summarize, we have the following property.

Proposition 2. If in the BINAR(1) model q1 = q2 = 0 and α11 + α21 = α12 + α22, then the sum process X1,t + X2,t is also
univariate INAR(1) with autocorrelation coefficient α11 + α21.

Thus the sum process is Markov with respect to its own history. Moreover, (13) says that ℓ(X1,t + X2,t |X1,t−1, X2,t−1)
depends on X1,t−1, X2,t−1 only via the sum X1,t−1+X2,t−1. In other words, the sum process can be viewed as an exogenous,
common Markov factor.
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We can interpret condition α11 + α21 = α12 + α22 in terms of the second order dynamics of the process. To this end,
we exclude two degenerate cases where the matrix A is diagonal or anti-diagonal. Then condition α11 + α21 = α12 + α22
implies that

(1, 1)⊤A = (α11 + α21)(1, 1)⊤,

i.e., α11 + α21 is an eigenvalue of the matrix A associated with the eigenvector (1, 1)⊤. Since the matrix A and the vector
(1, 1)⊤ are positive, by the Perron–Frobenius theorem, α11 + α21 is, in modulus, the simple largest eigenvalue of A. Thus,
among all the linear combinations of components of Xt , the process X1,t + X2,t has the largest autocorrelation coefficient
α11 + α21. This justifies its interpretation as a common factor.

2.4. Stationarity

2.4.1. The stationarity condition
The strict stationarity condition of the BINAR(1) process is given in the next proposition.

Proposition 3. Process (Xt ) is strictly stationary if and only if

(1 − α11)(1 − α22) > α12α21, (14)

or equivalently, if and only if the eigenvalues of A are smaller than 1 in modulus.

Note that under condition (14), inequalities α21 + α11 > 1 and α22 + α12 > 1 cannot hold simultaneously. Thus in
inequalities (3) and (4), at least one of the lower bounds is effectively zero.

2.4.2. The stationary distribution
Let b∞ be the pgf of the stationary distribution. By taking expectation in (7), we get

b∞(u, v) = b∞{a1(u, v), a2(u, v)}b(u, v) ⇔ b∞(u, v) =

∞∏
i=1

b{a(h)1 (u, v), a(h)2 (u, v)}.

The latter expression can be simplified in the special case considered in Corollary 1.

Proposition 4. If

(i) the processes ϵ1,t and ϵ2,t are mutually independent and Poisson P(λ1),P(λ2) distributed; and
(ii) q1 = q2 = 0 (which is possible only if α11 + α21 < 1 and α12 + α22 < 1),

then

(i) the stationary distribution of the process Xt is such that X1,t and X2,t are independent, Poisson P(λ1,∞), P(λ2,∞)
distributed, with parameters λ1,∞, λ2,∞ given by

(λ1,∞, λ2,∞)⊤ = (Id − A)−1(λ1, λ2)⊤,

(ii) and the sum process Yt = X1,t + X2,t is Poisson INAR(1), with Poisson parameter λ1 + λ2 and probability parameter
α = 1 − (λ1 + λ2)/(λ1,∞ + λ2,∞).

Proposition 4 is the bivariate analog of the well-known result that the stationary distribution of a univariate Poisson-
INAR(1) process is Poisson [34]. It is interesting to compare it with Proposition 2, since in both cases we have assumed
q1 = q2 = 0 and the sum process is INAR(1). On the one hand, Proposition 2 requires condition α11 + α21 = α12 + α22,
but leaves the distribution of the innovation (ϵt ) unconstrained. On the other hand, Proposition 4 does not restrict matrix
A, but is based on the independent Poissonian assumption of (ϵt ).

2.4.3. The marginal moments
The simple conditional expectation allows us to derive the first two marginal moments of the process. We have the

following result.

Proposition 5. The marginal expectation of the process is given by

E(Xt ) = (Id − A)−1E(ϵt ) (15)

and the covariance matrix is

Γ (0) =

[
var(X1,t ), ∗

cov(X1,t , X2,t ), var(X2,t )

]
=

∞∑
h=0

Ah
{γϵ + E(X1,t )γ12 + E(X2,t )γ34}(A⊤)h, (16)
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Table 1
Comparison of over-dispersion coefficients and correlation coefficients of the three
specifications of BINAR(1) model defined in Eq. (2).

var(X1,t )/E(X1,t ) var(X1,t )/E(X1,t ) corr(X1,t , X2,t )

Model 1 1.95 1.80 0.84
Model 2 1.47 1.40 0.55
Model 3 1 1 0

whereas the autocovariance matrices are

∀h∈N Γ (h) =

[
cov(X1,t , X1,t−h), cov(X1,t , X2,t−h)
cov(X2,t , X1,t−h), cov(X2,t , X2,t−h)

]
= AhΓ (0). (17)

Thus, since the matrix A is nonnegative, the variances var(X1,t ), var(X2,t ) are increasing in q1, q2, ceteris paribus,
whereas the marginal expectations do not depend on these two probabilities. Thus the marginal over-dispersion
coefficients var(X1,t )/E(X1,t ), var(X2,t )/E(X2,t ) have a wider range than in the independent BINAR model.

To illustrate this greater flexibility, we compare three BINAR models (2) which differ only by q1, q2. We set

A =

[
0.5, 0.3
0.4, 0.5

]
and assume ϵ1,t , ϵ2,t to be independent, P(1) distributed, whereas q1, q2 are specified as follows:

(i) In Model 1, q1 = min(α1,1, α1,2) = 0.4, q2 = min(α2,1, α2,2) = 0.3, i.e., both bivariate Bernoulli variables (Z1, Z2)⊤
and (Z3, Z4)⊤ have maximal, positive correlation.

(ii) In the [independent BINAR(1)] Model 2, q1 = α1,1α1,2 = 0.2, q2 = α2,1α2,2 = 0.15, i.e., both bivariate Bernoulli
variables have zero correlation.

(iii) In Model 3, q1 = q2 = 0, i.e., both bivariate Bernoulli variables have minimal, negative correlation.

Table 1 reports the over-dispersion coefficients and correlation coefficients computed using Proposition 4, under the
three above models. Note that in Model 3, the three coefficients are equal to 1, 1, 0, respectively. Indeed, by Proposition 4,
the marginal stationary distribution is bivariate independent Poisson. Moreover, as expected, these coefficients are largest
(resp. smallest) in Model 1 (resp. Model 3). In other words, by letting q1, q2 vary, the dependent BINAR model allows for
more flexible over-dispersion and correlation patterns than the benchmark Model 2.

3. Higher-order BINAR processes

3.1. BINAR(p) process

Similar as the INAR(p) process introduced by [14], we define the dependent BINAR (p) process as follows:

Definition 2. We say that process Xt is dependent BINAR(p) if it has the representation

Xt =

p∑
i=1

Ai(q1,i, q2,i) ◦ Xt−i + ϵt , (18)

where given Ft−1 = {Xt−1,Xt−2, . . .}, bivariate count variables Ai(q1,i, q2,i) ◦ Xt−i with i ∈ {1, . . . , p} are mutually
independent, and are independent of ϵt . Moreover, Ai(q1,i, q2,i) ◦ Xt−i is the sum of X1,t−i independent copies of bivariate
Bernoulli variable with marginal (resp. joint) probabilities α11,i, α21,i (resp. q1,i), as well as X2,t−i independent copies of
bivariate Bernoulli variable with marginal (resp. joint) probabilities α12,i, α22,i (resp. q2,i).

Thus compared with the BINAR(1) process, the extended model (18) has a slightly different interpretation since each
individual can produce off-springs of both types at the next p periods, and these production outcomes are independent
across these periods.

The stationarity condition of the BINAR(p) process is given below.

Proposition 6. Process (18) is strictly stationary if and only if
p∑

i=1

α11,i < 1,
p∑

i=1

α22,i < 1, (19)

and
(
1 −

p∑
i=1

α11,i

)(
1 −

p∑
i=1

α22,i

)
>

( p∑
i=1

α21,i

)( p∑
i=1

α12,i

)
. (20)

or equivalently, if and only if the eigenvalues of A1 + · · · + Ap are smaller than 1 in modulus.
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The BINAR(p) process has a weak VAR(p) representation since

E(Xt+1|Ft ) =

p∑
i=1

AiXt+1−p + E(ϵt+1), (21)

and its conditional pgf is

E(uX1,t vX2,t |Ft−1) = exp
{
ln b(u, v) +

p∑
i=1

X1,t−i ln ai,1(u, v) +

p∑
i=1

X2,t−i ln ai,2(u, v)
}
, (22)

where

ai,1(u, v) = q1,iuv + (α11,i − q1,i)u + (α21,i − q1,i)v + (1 + q1,i − α11,i − α21,i),
ai,2(u, v) = q2,iuv + (α12,i − q2,i)u + (α22,i − q2,i)v + (1 + q2,i − α12,i − α22,i).

Thus the conditional pgf is exponentially affine in Xt−1, . . . ,Xt−p, i.e., the process Xt is CaR of order p [CaR(p)]. Similar as
the BINAR(1) process, its h-step-ahead conditional pgf is still exponentially affine.

Corollary 2. Process defined in (18) is such that, for each h ≥ 1,

∀u,v>0 E(uX1,t+hvX2,t+h |Ft ) = exp
{
Bh,0(u, v) +

p∑
i=1

B⊤

h,i(u, v)Xt+1−i

}
, (23)

where Bh,0 and Bh,i are univariate and bivariate functions, respectively. For h = 1, their values are given by Eq. (22), viz.

B1,0(u, v) = ln
{
b(u, v)

}
,

B1,i(u, v) =

⎡⎣ln
{
q1,iuv + (α11,i − q1,i)u + (α21,i − q1,i)v + (1 + q1,i − α11,i − α21,i)

}
ln

{
q2,iuv + (α12,i − q2,i)u + (α22,i − q2,i)v + (1 + q2,i − α12,i − α22,i)

}
⎤⎦ ,

whereas for h > 1, we have the following recursions:

Bh+1,0(u, v) = Bh,0(u, v) + ln b
{
Bh,1(u, v)

}
,

∀i∈{1,...,p} Bh+1,i(u, v) = 1i̸=pBh,i+1(u, v) + B1,i{Bh,i(u, v)}.

The proof is a direct consequence of Eq. (22) and is omitted.
Finally, the marginal mean and variance–covariance matrix of the BINAR(p) also have closed form. Their formulas are

derived in Appendix A.3.

3.2. BINAR(∞) process

3.2.1. Definition, stationarity, and memory persistence
A natural extension of the BINAR(p) model is to let the order p go to infinity. More precisely, we have the following

result.

Definition 3. We say that the process Xt is dependent BINAR(∞) if it has the representation

∀t Xt =

∞∑
i=1

Ai(q1,i, q2,i) ◦ Xt−i + ϵt , (24)

where the variables Ai(q1,i, q2,i) ◦ Xt−i are defined in the same way as in Definition 2.

In the above definition, the partial sum
∑p

i=1 Ai(q1,i, q2,i)◦Xt−i given Ft−1 converges almost surely to a non degenerate
limit when p → ∞. Moreover, since all the terms on the right-hand side are integer-valued, the variables Ai(q1,i, q2,i)◦Xt−i
are null for i larger than a certain stochastic threshold τt .

To our knowledge, this is the first infinite-order INAR-type model in the literature; see also [26] for infinite-order,
univariate INARCH process. Let us first provide its stationarity condition.

Proposition 7. The process (18) is strictly stationary if and only if
∞∑
i=1

α11,i < 1,
∞∑
i=1

α22,i < 1, (25)

∞∑
i=1

α12,i < ∞,

∞∑
i=1

α21,i < ∞, (26)
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1 −

∞∑
i=1

α11,i

)(
1 −

∞∑
i=1

α22,i

)
>

( ∞∑
i=1

α21,i

)( ∞∑
i=1

α12,i

)
. (27)

or equivalently, if and only if matrix
∑

∞

i=1 Ai is finite and its eigenvalues are all smaller than 1 in modulus.

This proposition nests Propositions 3 and 6. Its proof is provided in Appendix A.4.
This stationarity condition has also implications for the ranges of q1,i, q2,i, which have to satisfy the analogue of

inequalities (3) and (4), for each i. Since the sequences (α11,i)i and (α21,i)i converge to zero, for large iwe have α11,i+α21,i <

1. Then the ranges become, for large i,

0 ≤ q1,i ≤ min(α11,i, α21,i), 0 ≤ q2,i ≤ min(α12,i, α22,i).

Finally, the conditional expectation and conditional pgf of a BINAR(∞) process can be deduced from (21) and (23) by
replacing p by infinity. Under the stationary condition, these infinite summation are all finite.

3.2.2. Exact simulation
While simulating a BINAR(p) process is straightforward for finite p, this is no longer the case when p = ∞. Let us now

derive an exact simulation method for the latter. The basic idea is that the infinite summation in (24) is almost surely
finite, and thus it suffices to sample the stochastic threshold τt ∈ N such that the infinite summation actually stops at
order τt , i.e., Aτt ◦ Xt−τt is non null but Ai ◦ Xt−i = 0 is zero for any i ≥ τt + 1. First we define, for each i ≥ 1,

δi(Ft−1) = (1 + q1,i − α11,i − α21,i)X1,t−i (1 + q2,i − α12,i − α22,i)X2,t−i ,

which is equal to Pr(Ai ◦ Xt−i = 0|Ft−1). We also assume, without loss of generality, the following condition.

Assumption 1. For every integer i ≥ 1, α11,i + α21,i < 1 and α12,i + α22,i < 1.

Indeed if the first few terms qi,1, qi,2 do not satisfy this condition, we can leave the corresponding variables Ai ◦ Xt−i
out of the infinite sum and simulate them separately. This assumption implies that δi(Ft−1) > 0, for any i. Then the
conditional CDF of the count variable τ is

∀i∈N Pr(τt ≤ i|Ft−1) =

∞∏
j=i+1

δj(Ft−1) = F (i + 1|Ft−1).

This CDF has the following property.

Lemma 2. The function i ↦→ F (i|Ft−1) is nondecreasing. Its upper limit is limi→∞ F (i|Ft−1) = 1, whereas its lower limit
F (0|Ft−1) is strictly positive.

Since F (i + 1|Ft−1) can be easily computed, we can simulate Xt given Ft−1 as follows:

1. Draw U from the uniform distribution U[0, 1].
2. Find the unique integer τt ≥ 0 such that F (τt − 1Ft−1) < U ≤ F (τt |Ft−1), where by convention we set

F (−1|Ft−1) = 0. In particular, by definition Xt−τt cannot be zero since δτt (Ft−1) = F (τt |Ft−1)/F (τt − 1|Ft−1) > 1.
3. Sample a certain number of independent copies of Aτt ◦Xt−τt until we obtain the first non-null observation. This is

possible due to Assumption 1.
4. Sample random vectors Ai◦Xt−i for i ∈ {1, . . . , τt−1}, as well as ϵt . Then a sample of Xt is given by

∑τt
i=1 Ai◦Xt−i+ϵt .

3.2.3. A constrained specification with persistent memory
To avoid the curse of dimensionality, in the application of this paper, we will focus on the following constrained

BINAR(∞) specification:

∀i ∈ N, α11,i = α11/id, α21,i = α21/id, α12,i = α12/id, α22,i = α22/id, q1,i = q1/id, q2,i = q2/id, (28)

where the power index d > 1 to ensure that
∑

i Ai is finite, and for each i, probabilities q1,i and q2,i satisfy the constraint:

max(α11,i + α21,i − 1, 0) ≤ q1,i ≤ min(α11,i, α21,i),
max(α12,i + α22,i − 1, 0) ≤ q2,i ≤ min(α12,i, α22,i).

It is easily checked that this is true if and only if these two inequalities hold for i = 1.
While in a BINAR(p) model, the autocovariance function decays geometrically in the lag h, a distinct feature of the

BINAR(∞) model is that it allows the autocovariance to have a hyperbolic decay rate. More precisely we have the following
result.

Lemma 3. In model (28), the autocovariance matrix Γ (h) = E[{Xt − E(Xt )}{Xt−h − E(Xt )}⊤] of the process Xt decays also at
the hyperbolic rate d.
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Fig. 1. Simulated trajectory of the BINAR(∞) process defined in (24) under constraint (28). The trajectory of (X1,t ) is dotted line and that of (X2,t )
in dashed line.

Fig. 2. ACF and CCF function of the same simulated BINAR(∞) process as in Fig. 1. As is expected, both functions decay rather slowly.

This model has a similar spirit as the (univariate) ARCH(∞) model for asset returns [18,43]. Similar as in this latter
literature, since d > 1, the autocovariance matrix Γ (h) is summable, ruling out the possibility that

∑
∞

h=0 Γ (h) = ∞.
We plot in Fig. 1 the simulated path of a BINAR(∞) process with

A =

[
0.12, 0.03
0.06, 0.15

]
, d = 1.3, q1 = 0.015, q2 = 0.03, (ϵ1,t , ϵ2,t ) ∼ BP(1, 1, 0.5).

In this model, the eigenvalues of (
∑

∞

i=1 i
−d)A1 are 0.7 and 0.35, respectively; thus the persistence of the process is quite

strong.
The simulated means and variances of the two processes are Ê(X1,t ) = 3.4, Ê(X2,t ) = 4.6, ˆvar(X1,t ) = 3.7, ˆvar(X2,t ) = 5.1,

corresponding to a process with mild over-dispersion. In Fig. 2 we also report the autocorrelation functions (ACF) as well
as the cross-correlation function (CCF) of the two component processes. These functions are computed using a simulated
sample of 10,000 observations.

4. Predictive distributions

It has been argued by McCabe and Martin [32] that one of the essential properties of a count process model is the
tractability of the predictive pmf of Xt+h|Ft , for both estimation and forecasting purposes.

Indeed, in terms of estimation, there are two natural approaches for the BINAR(p) model. The first one is the
Generalized Method of Moments (GMM), based on moment restrictions derived from the conditional pgf [21]. While
this approach is computationally simple, it usually induces an efficiency loss. The second approach is the maximum
likelihood estimation. Although more efficient, its difficulty lies in the computation of the conditional pmf ℓ(Xt |Ft−1).
Indeed, since this distribution is the convolution of

∑p
i=1(X1,t−i +X2,t−i)+1 bivariate discrete distributions, its expression

is highly cumbersome if we apply brute-force convolution; see, e.g., [31] for the expression of
∑n

i=1(Z1,j, Z2,j)
⊤. This has

been identified by [36] as the major downside of higher-order (B)INAR models.
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As for forecasting, the conditional expectations of count processes are non integer-valued and thus incompatible with
count data. While some approximation methods have been proposed in the univariate INAR framework [24,33], they are
generically time consuming and induce significant errors; see [30] for such an analysis. In this section we clarify that in
the dependent (and, a fortiori, independent) BINAR(p) model, the conditional pmf ℓ(Xt+h−1|Ft−1) can be computed exactly
at any horizon h. This makes the likelihood-based estimation feasible, and eliminates the approximation error induced for
the forecasting. For expository purposes, we focus on BINAR(p) models with a finite, potentially large p. We first consider
the horizon h = 1, before explaining how to adapt the algorithm to higher horizons.

4.1. One-step-ahead predictive distribution

Our aim here is to compute the probabilities Pr{Xt = (x1, x2)⊤|Ft−1} simultaneously for all couples (x1, x2) ∈

[|0,m|] × [|0, n|], where the bounds m, n are chosen such that the residual probability Pr{X1,t > m or X2,t > n|Ft−1}

is negligible.
Let us first remark that for any count process, the conditional pgf and pmf are linked via

∀u,v≥0 E(uX1,t vX2,t |Ft−1) =

∞∑
i=0

∞∑
j=0

Pr{Xt = (i, j)⊤|Ft−1}uivj.

Thus Pr{Xt = (x1, x2)⊤|Ft−1} is equal to the (x1, x2)th order coefficient in the above Taylor expansion with respect to
(u, v), at (0, 0). Let us now make use of the simple conditional pgf to compute the Taylor expansion up to order (m, n).
First, we rewrite (22) into

E(uX1,t vX2,t |Ft−1) = exp
{
ln b(0, 0) +

p∑
i=1

X1,t−i ln a1(0, 0) +

p∑
i=1

X2,t−i ln a2(0, 0)
}

× exp
{
ln

b(u, v)
b(0, 0)

+

p∑
i=1

X1,t−i ln
ai,1(u, v)
ai,1(0, 0)

+

p∑
i=1

X2,t−i ln
ai,2(u, v)
ai,2(0, 0)

}
.

Then we perform the (m, n)th order Taylor expansion of ln{b(u, v)/b(0, 0)} and ln{ai,j(u, v)/ai,j(0, 0)} at (0, 0) for each
i ∈ {1, . . . , p} and j ∈ {1, 2}. For most standard bivariate count distributions, ln b(u, v) is Taylor-expandable. Examples
include the bivariate Poisson distribution, see Eq. (10), the bivariate Hermite distribution, see Eq. (11), as well as the
bivariate negative binomial distribution [15], with pgf

∀u,v≥0 such that b1u+b2v<1 b(u, v) = (1 − b1 − b2)θ/(1 − b1u − b2v)θ ,

where b1, b2, θ > 0, 1 − b1 − b2 > 0.
As for ln{ai,j(u, v)/ai,j(0, 0)}, we have

ln ai,j(u, v)/ai,j(0, 0) =

∞∑
k=1

(−1)k−1Pk
i,j(u, v)/k =

m+n∑
k=1

(−1)k−1Pk
i,j(u, v)/k + om,n(u, v), (29)

where, for all i ∈ {1, . . . , p},

Pi,1(u, v) =
ai,1(u, v)
ai,1(0, 0)

− 1 =
q1,iuv + (α11,i − q1,i)u + (α21,i − q1,i)v

1 + q1,i − α11,i − α21,i
,

Pi,2(u, v) =
ai,2(u, v)
ai,2(0, 0)

− 1 =
q2,iuv + (α12,i − q2,i)u + (α22,i − q2,i)v

1 + q2,i − α12,i − α22,i
,

are polynomials in u and v without constant term, whereas om,n(u, v) represents the omitted higher-order terms in the
expansion. Let us explain why the truncation in (29) stops at order m+n. The polynomial Pk

i,j(u, v) is a linear combination
of terms uk1vk2 , where k1 + k2 ≥ k. Thus if k > m+ n, then either k1 > m or k2 > n, and uk1vk2 is omitted in the (m, n)th
order Taylor expansion. Therefore, we only need to expand recursively each Pk

i,j(u, v) for k ∈ {1, . . . ,m+n}, i ∈ {1, . . . , p}
and j ∈ {1, 2} and truncate these polynomials at order (m, n). This latter can be achieved by the following algorithm.

Proposition 8. If we represent the (m, n)th order truncation of a polynomial

P(u, v) =

m∑
k1=0

n∑
k2=0

ck1,k2u
k1vk2 + om,n(u, v),

by the column vector

(c0,0, c0,1, . . . , c0,n  
n+1 terms

, c1,0, c1,1, . . . , c1,n  
n+1 terms

, . . . , cm,0, cm,1, . . . , cm,n  
n+1 terms

)⊤ ∈ R(m+1)(n+1),
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then the (m, n)th order truncation of polynomial Pk(u, v) is represented by the column vector⎡⎢⎢⎢⎢⎣
M0 0 0 0 · · ·

M1 M0 0 · · · · · ·

M2 M1 M0 · · · · · ·

...
...

...
...

...

Mm Mm−1 · · · · · · M0

⎤⎥⎥⎥⎥⎦
k

  
=M

⎡⎢⎢⎢⎢⎢⎣
e1
0
...
...

0

⎤⎥⎥⎥⎥⎥⎦ ,

where column vector e1 = (1, 0, 0, . . . , 0)⊤ ∈ Rn+1; square matrix M ∈ M(m+1)(n+1)(R) is (m + 1) × (m + 1) block lower
triangular Toeplitz, i.e.,

M = {1(i ≥ j)Mi−j}0≤i,j≤m,

and the block matrices Mi ∈ Mn+1(R) are themselves lower triangular Toeplitz, viz.

∀i∈{0,...,m} Mi = {1(k1 ≥ k2)ci,k1−k2}0≤k1,k2≤n.

As an illustration, if m = n = 2 we have

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c00 0 0
c01 c00 0
c02 c01 c00

0 0
c10 0 0
c11 c10 0
c12 c11 c10

c00 0 0
c01 c00 0
c02 c01 c00

0
c20 0 0
c21 c20 0
c22 c21 c20

c10 0 0
c11 c10 0
c12 c11 c10

c00 0 0
c01 c00 0
c02 c01 c00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This matrix has (m + 1)2 = 9 blocks, each block is a (n + 1) × (n + 1) = 3 × 3 matrix.
The proof of this proposition is obvious and omitted.
After Taylor-expanding ln b(u, v) and ln{1 + Pi,j(u, v)} for i ∈ {1, . . . , p} and j ∈ {1, 2}, we sum up these expansions

and get

E(uX1,t vX2,t |Ft−1) = c exp
{ m∑
k1=0

n∑
k2=0

fk1,k2 (Ft−1)uk1vk2 + Rm(u, v)
}

= c
m+n∑
k=0

1
k!

{ m∑
k1=0

n∑
k2=0

fk1,k2 (Ft−1)uk1vk2
}k

+ om,n(u, v), (30)

where the coefficients fk1,k2 (Ft−1) are affine in Ft−1, whereas

c = exp
{ p∑

i=1

X1,t−i ln(1 + q1,i − α11,i − α21,i) +

p∑
i=1

X2,t−i ln(1 + q2,i − α12,i − α22,i) + ln b(0, 0)
}
.

In Eq. (30), the expansion stops at order m+ n for the same reason as in (29). Then we apply Proposition 8 and obtain
the (m, n)th order truncation of polynomials{ m∑

k1=0

n∑
k2=0

fk1,k2 (Ft−1)uk1vk2
}k

for each k ∈ {1, . . . ,m + n}. Finally by coefficient matching we get the pmf of Xt |Ft−1.
In terms of computational cost, the Taylor expansions of ln b(u, v) and ln{1+Pi,j(u, v)} with i ∈ {1, . . . , p} and j ∈ {1, 2}

are conducted only once when t varies. Thus for each t , the computation of ℓ(Xt |Ft−1) involves essentially the computation
of the right-hand side of Eq. (30), whose cost is independent of p. Thus this method is applicable even for large p.

The tractability of the conditional distribution has several important implications. First, it allows for efficient maximum
likelihood estimation. In the Online Supplement, we propose a small comparison between the MLE and a GMM estimator
via Monte Carlo experiments. Second, the likelihood function can also be used for model selection via the information



S. Darolles, G.L. Fol, Y. Lu et al. / Journal of Multivariate Analysis 173 (2019) 181–203 193

Table 2
CPU time of the two forecasting methods applied to BINAR(1) and BINAR(4) models. For the exact
approach, we compute the value of the conditional pmf ℓ((i, j)⊤|FT ) for any i, j ranging from 0 to 15,
although in the table we only report their values for i, j non larger than 8.
p = 1, XT = (1, 4)⊤

Method Exact method Simulation-based method Simulation-based method
Number of draws 0 N = 10,000 N = 100,000
CPU time 0.01 s 0.05 s 0.5 s

p = 4, XT = Xt−1 = XT−2 = XT−3 = (1, 4)⊤

Method Exact method Simulation-based method Simulation-based method
Number of draws 0 N = 10,000 N = 100,000
CPU time 0.01 s 0.2 s 2 s

criteria [41], as an alternative to the Box–Jenkins approach [7]. Third, it allows to conduct likelihood ratio type tests for
statistical significance of the parameters.

4.2. Comparison with the simulation-based forecasting approach

Let us now illustrate how the exact forecasting approach fares against the state-of-the-art simulation-based method
[24,32] when it comes to the computation of the one-step-ahead predictive distribution. While this method is general and
applies to other non-BINAR models, it will be shown that one of the advantages of BINAR models is that the exact approach
outperforms significantly the simulation approach, both in terms of computational time and forecasting accuracy. Note
that McCabe et al. [33] proposed another method to approximate the predictive pmf. They approximated the univariate
INAR(p) process by a Markov chain with S states, where S is a large integer. This method involves the computation of
matrices of dimension S2p × S2p, which is extremely cumbersome when p ≥ 2.

To this end we consider the BINAR(p) model with

Ai =
1
id

[
0.12, 0.06
0.03, 0.15

]
, i ∈ {1, . . . , p}, q1 = 0.015, q2 = 0.03, ϵt ∼ BP(2, 2, 2)

Given the past observation FT , the simulation-based method consists in drawing a large number of possible future values
X (n)
T+1 with n ∈ {1, . . . ,N}. Then the conditional pmf is approximated by

∀i,j∈N Pr{XT+1 = (i, j)⊤|FT } ≈
1
N

N∑
n=1

1
{
X (n)
T+1 = (i, j)⊤

}
.

We first report in Table 2 the run time of the two methods (for the simulation-based method we consider two values
for the number of draws). Both methods are implemented in R using the same laptop (intel i5, 3.0 GHz, 8 GB RAM) and
the program is available from the authors upon request.

We see that the exact method is 10 to 100 times faster than the simulation method. Moreover this ratio becomes larger
when the order p increases. This is expected since the run time of the simulation-based method is roughly proportional
to p, whereas as we see in the previous section, it does not depend on p in our approach.

Let us now evaluate the approximation error of the simulation-based approach. We focus on the above BINAR(1) model,
and express, in Table 3, the approximate conditional pmf’s as a percentage of the corresponding exact values.

We can see that the approximation error of the simulation approach is substantial, even with a huge number of draws
(N = 100,000). This is particularly the case for the probabilities of ‘‘extreme events", i.e., when either X1,t+1 or/and X2,t+1
is large. This is a serious downside of the standard simulation approach, since in finance, predicting extreme events is
key to the risk management.

4.3. Multiple-step-ahead predictive distributions

Let us now adapt the above algorithm for the computation of ℓ(Xt+h|Ft ). For expository purposes, we focus on the
BINAR(1) process. To Taylor-expand the conditional pgf given in Proposition 1, we use the following procedure:

1. First, we use Proposition 8 to compute the (m,m)th-order Taylor expansion of ln a(h)1 (u, v), ln a(h)2 (u, v) and b(h)(u, v)
at (u, v) = (0, 0), where m is chosen such that the probability of either component processes taking values larger
than m is negligible. Note that although by Proposition 1, a(h)1 and a(h)2 are 2hth-order polynomial in (u, v), which can
be large for large h, only the terms of degree lower than min(m, 2h) contribute to the (m,m)th Taylor expansion.
Thus this step involves roughly the same computational effort for different values of h.
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Table 3
Conditional pmf (upper panel) as well as the relative accuracy of the simulation approach compared to
the exact approach, for N = 10,000 draws (middle panel) and N = 100,000 draws (lower panel).
Conditional pmf computed using the exact method

X1,T+1 = 0 X1,T+1 = 2 X1,T+1 = 4 X1,T+1 = 6 X1,T+1 = 8
X2,T+1 = 0 0.00096 0.00248 0.00104 0.00017 0.00001
X2,T+1 = 2 0.00324 0.02270 0.01944 0.00552 0.00074
X2,T+1 = 4 0.00172 0.02491 0.04171 0.02079 0.00447
X2,T+1 = 6 0.00035 0.00885 0.02625 0.02250 0.00782
X2,T+1 = 8 0.00003 0.00145 0.00698 0.00975 0.00542

Relative accuracy of the simulation-based method, N = 10, 000

X1,T+1 = 0 X1,T+1 = 2 X1,T+1 = 4 X1,T+1 = 6 X1,T+1 = 8
X2,T+1 = 0 72% 132% 105% 115% 0%
X2,T+1 = 2 111% 101% 104% 104% 93%
X2,T+1 = 4 87% 96% 98% 99% 109%
X2,T+1 = 6 85% 103% 106% 108% 91%
X2,T+1 = 8 0% 89% 91% 108% 101%

Relative accuracy of the simulation-based method, N = 100, 000

X1,T+1 = 0 X1,T+1 = 2 X1,T+1 = 4 X1,T+1 = 6 X1,T+1 = 8
X2,T+1 = 0 118% 99% 105% 92% 65%
X2,T+1 = 2 101% 97% 101% 96% 115%
X2,T+1 = 4 96% 98% 100% 100% 100%
X2,T+1 = 6 99% 96% 101% 97% 98%
X2,T+1 = 8 80% 95% 97% 105% 100%

2. Then we compute the (m,m)th order Taylor expansion of

exp{X1,t ln a(h)1 (u, v) + X2,t ln a(h)2 (u, v) + ln b(h)(u, v)}

= c exp
{
X1,t ln

a(h)1 (u, v)

a(h)1 (0, 0)
+ X2,t ln

a(h)2 (u, v)

a(h)2 (0, 0)
+ ln b(h)(u, v)

}
= c

2m∑
k=0

1
k!

{
X1,t ln

a(h)1 (u, v)

a(h)1 (0, 0)
+ X2,t ln

a(h)2 (u, v)

a(h)2 (0, 0)
+ ln

b(h)(u, v)
b(0, 0)

}k
+ om,m(u, v),

where c = exp{X1,t ln a(h)1 (0, 0)+X2,t ln a(h)2 (0, 0)+ ln b(0, 0)}. This is conducted using the same method as for h = 1.
Finally we deduce Pr{Xt+h = (i, j)⊤|Ft} for any (i, j) ∈ [|0,m|]

2 by coefficient matching.

5. An application to mutual fund flows

5.1. The mutual fund industry

Mutual funds (MF) are investment vehicles who invest in a wide range of assets ranging from liquid ones such as
stocks, bonds, to highly illiquid ones such as hedge funds. Their clients include, for instance, insurance companies, private
banks, large corporations as well as retail investors (In some funds, including the one we study, retail investors’ orders
are first centralized by a broker before being transferred to the fund. Thus from the fund’s point of view, its client is
the broker). They are traditionally much less regulated than commercial banks, but this potential loophole has recently
received much attention from the regulators.

Most MF are open-ended, i.e., they allow investors to purchase new shares, or redeem their shares on a daily basis. Thus
the size of the MF can feature important short-term fluctuations, making them vulnerable to liquidity risk. In particular,
during a market turmoil, investors’ redemption decisions tend to cluster. If the fund manager’s cash holding is insufficient
to meet the redemption requests, he/she might be forced to sell its illiquid assets, whose market liquidity would have
also plunged due to the crisis. Such fire selling usually leads to significant investment loss, which in turn creates panics
and triggers further redemptions. This phenomenon is called fund run.

In contrast, while inflow, i.e., the purchase orders of the MF, or cash holding can offset the outflow due to redemption,
a sudden large inflow also dilutes the investment performance of the fund due to the lack of immediate investment
opportunities. Thus they can also trigger subsequent (large) outflows. As a consequence, it is essential for the fund manager
to monitor in parallel the outflow and the inflow pattern of its clients, on a daily basis. The current MF literature usually
focuses on the outflow only, or the net outflow, i.e., the difference between the outflow volume and inflow volume [12,38].
Moreover, many of these studies are based on weekly data only.

Finally, while prior studies focus on the volume of the outflow/inflow, our attention is on the number of purchases
X1,t and redemption orders X2,t . These variables are closely related since on each trading day, the volume Y1,t and Y2,t of



S. Darolles, G.L. Fol, Y. Lu et al. / Journal of Multivariate Analysis 173 (2019) 181–203 195

Fig. 3. Joint trajectory of the purchase count (upper panel) and redemption count (lower panel) during the same 100 trading days.

the outflow/inflow have the compound representation

Y1,t =

X2,t∑
j=1

Sj,t , Y2,t =

X2,t∑
j=1

Bj,t , (31)

where Sj,t (resp. Bj,t ) denotes the volume of the jth redemption (resp. purchase). Moreover, when j and t vary, (Sj,t ) and
(Bj,t ) can be reasonably assumed to be i.i.d.

In this framework, our preference for studying the counts rather than the volume is motivated by the following reasons.
First, very often a large outflow volume is due to the redemption order of a large investor. These ‘‘VIP" clients usually
have privileged relationship with the fund manager and in the case of a large redemption, they also tend to (privately)
inform the fund manager sufficiently in advance so that the latter can avoid a massive fire selling. However, a large X2,t
spells a collective withdrawal, i.e., the fund run, which is the most dangerous scenario. More importantly, the non-linear
forecasting of the net outflow, i.e., Y2,t − Y1,t , can be easily deduced from representation (31). Indeed, the conditional
Laplace transform of Y2,t − Y1,t given Ft−1 is

∀u∈R E{e−u(Y2,t−Y1,t )|Ft−1} = E
[
{E(euB1,t )}X2,t {E(e−uS1,t )}X1,t |Ft−1

]
. (32)

The right-hand side is the conditional pgf of the count process evaluated at {E(euS1,t ), E(e−uB1,t )}, which has closed
form under suitable distributional assumptions on S1,t and B1,t (such as gamma). Thus the left-hand side of (32) is
readily available. Then the conditional Value-at-Risk of the net outflow, say, can be accurately approximated without
simulation [19]. As a consequence, in the paper we will only focus on counts.

5.2. Data description

Our dataset comes from a French equity-focused MF. We observe the daily number of purchase orders X1,t and
redemption orders X2,t , during some 1000 trading days. Figs. 3–5 plot the trajectory of the two count processes during a
sub-sample of 100 trading days, as well as the histograms of X1,t and X2,t .

We report below the empirical marginal moments of the two processes.
Both processes feature mild unconditional over-dispersion, a typical feature of BINAR processes. Fig. 5 plots their

autocorrelation patterns.
These ACF’s and CCF decay rather slowly, resembling the simulated patterns of Section 3.2.3 for a model with

hyperbolically decaying coefficients Ai, q1,i, q2,i. Thus we will focus on the estimation of this latter model. Note that we can
interpret the thinning part of model (2) as trades by clients who also made purchase/sell orders in the previous periods.
Then the binomial distributional assumption can be explained by the fact that usually clients only trade on a daily basis.
Even if they place several orders within a day, usually the fund only executes the orders once each day at the market
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Fig. 4. Histogram of (X1,t ) (left panel) and (X2,t ) (right panel) counts. We can see that the probability of X1,t and X2,t taking large values is extremely
small.

Fig. 5. ACF of inflow count process (X1,t ) (left panel) and outflow process count (X2,t ) (middle panel), as well as the CCF (right panel).

Table 4
Empirical (marginal) moments of the two count processes (X1,t ) and (X2,t ).

Ê(X1,t ) Ê(X2,t ) ˆvar(X1,t ) ˆvar(X2,t ) ˆcorr(X1,t , X2,t )

2.63 3.06 3.67 3.97 0.27

closure, and thus only one aggregate order is counted for each client. Thus this interpretation suggests model (2) with the
further constraint that q1 = q2 = 0, i.e., clients do not make simultaneous buy and sell orders as these two will partially
cancel out. In practice, in the application, although this constrained version of model (2) is easier to interpret, we have
considered a BINAR(∞) as this latter reflects better the persistence of the ACF’s.

Since the CCF indicates a positive (marginal) correlation between the two processes, it is reasonable to assume that
the innovation process ϵt features also positive correlation between its two components. Moreover, Table 4 suggests that
the degree of unconditional over-dispersion of the two count variables is rather weak, making the assumption of Poisson
marginal distribution plausible for ϵt . Thus we assume the distribution of the latter to be bivariate Poisson BP(λ1, λ2, λ3).
Then the set of parameters is

θ = (α11, α22, α12, α21, q1, q2, λ1, λ2, λ3, d).

Let us now interpret the regression parameters αi,j. Parameter α11 measures how purchase decisions of investors are
(positively) correlated, due to the so-called reputation effect. Moreover, since here the investors’ benchmark is past yearly
performance and our observations concern daily inflow/outflow movements, it is not surprising that this reputation effect
decays rather slowly when daily data are used, as is shown by the ACF of X1,t . Similarly, parameter α22 measures the
panic effect among investors. Parameter α12 captures the propensity of redemption following large recent inflows, as
such inflows might dilute the fund’s performance due to lack of sufficient investment opportunities. This is consistent
with the CCF given in Fig. 5, which indicates a positive cross correlation between X2,t and the lagged values of X1,t .
Finally, parameter α21 captures the propensity of purchase following large outflows. This can be interpreted as the fund
manager’s capability of attracting new investment in order to stabilize the fund size.
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Table 5
Parameter estimates of the constrained BINAR(∞) model along with the corre-
sponding standard errors in parentheses, obtained by numerically inverting the
Hessian matrix.
Parameter Estimate Parameter Estimate

α11 0.174 (0.055) α21 0.036 (0.016)
α12 0.120 (0.052) α22 0.285 (0.121)
q1 0.022 (0.012) q2 0.017 (0.007)
λ1 0.712 (0.210) λ2 0.695 (0.160)
λ3 0.354 (0.184) d 1.830 (0.152)

Fig. 6. Joint evolution of X̂2,t+1 (in thick full line) and the realized redemption count X2,t+1 (in dashed line) during 50 trading days.

5.3. Model estimation

We estimate the parameters by maximum likelihood. A practical difficulty of applying an infinite order model is that
our number of observations (approximately 1000) is finite. Thus the ‘‘∞’’ in

∑
∞

i=1 Ai ◦Xt−i should be replaced by a finite,
but large p. In the estimation we take p = 300, and regard the first p values of Xt as initial values rather than observations.
Table 5 reports the maximum likelihood estimates.

The parameter estimate α̂22 (= 0.285) is larger than α̂11 (= 0.174). In other words, the panic effect is more important
than the reputation effect. Second, α̂12 (= 0.120) is much larger than α̂21 (= 0.036), which means that existing investors
are quite sensitive to large inflows and tend to redeem their shares for fear of performance drop after a large inflow.
This highlights the importance of monitoring the purchase counts separately from the redemption counts. By contrast,
it seems difficult for the fund to attract new investors after large outflows. Finally, the two eigenvalues of the matrix
(
∑

∞

i=1 i
−d)A1 are approximately 0.580 and 0.260, respectively, which are both smaller than 1. Thus the joint process seems

to be stationary.
Let us now compute the conditional pmf. We focus on horizon 1, since the fund manager usually adjusts the positions

on a daily basis. For each trading day t in our observation period, we compute Pr(X1,t+1 = m, X2,t+1 = n|Ft ) for all
m, n ≤ M , where we set M to be the largest past observation M = maxt,j Xj,t = 17. Then we follow [32] and compute the
conditional mode (X̂1,t+1, X̂2,t+1) defined by

(X̂1,t+1, X̂2,t+1) = arg max
0≤m,n≤M

Pr(X1,t+1 = m, X2,t+1 = n|Ft ).

Fig. 6 displays the evolution of the conditional mode X̂2,t against the corresponding realized value X2,t for all the past
dates. For expository purpose we have chosen a window of 50 trading days.

Globally, the mode forecast satisfactorily capture the local tendency of the count process, although the realized paths
tends to be more erratic.

Diagnostic check. Let us finally conduct some adequacy checks of the estimated model. We first compute the ACF/CCF
of the estimated model, as well as some summary statistics of the empirical Pearson residuals [41]. For the first one,
since in the paper we have only derived the ACF/CCF for finite p, we resort to Monte Carlo simulation to obtain their
approximations in this BINAR(∞) model. Due to space constraint this figure is provided in Appendix A.7. We can remark
that globally, the ACF/CCF of the estimated process are quite similar to their empirical counterparts reported in Fig. 5.
Moreover, the Pearson residuals seem to be well uncorrelated across different lags.



198 S. Darolles, G.L. Fol, Y. Lu et al. / Journal of Multivariate Analysis 173 (2019) 181–203

6. Conclusion

We have extended the BINAR(1) model to allow for dependent thinning, arbitrary errors, and higher-order dynamics.
This family has intuitive interpretations, tractable stationarity properties, and are rather flexible compared to existing
models. More importantly, we have derived tractable expressions for the predictive distributions, allowing for likelihood
based estimation and non-linear forecasting. The model has been applied to a new application area, i.e., fund liquidity
risk.

In the paper we have followed the literature by focusing on bivariate models. Is it possible to extend our model
into higher dimensions? From the fund manager’s point of view, this can be of interest since different investors-large
corporates and bank/insurance companies, say, can have different behavior. If count series, two for each client category,
becomes available, then a multivariate analysis allows to study cross sectional dynamic effects between different clients
and may improve the quality of forecasts. The answer to this question is (partially) affirmative, since Eq. (2) can be
extended to the multivariate case, using the multivariate Bernoulli distribution [8].

However such extensions are not without downsides. First, this extended model is not closed under margins; for
example the bivariate margins of the trivariate extension no longer have representation (2), except when the matrix
A is diagonal; see [35]. Second, and most importantly, as in many other multivariate models, when the dimension
increases, both the number of parameters and the computational burden increase. These issues might be mitigated by
introducing constrained specifications (see, e.g., Proposition 2), or by conducting pair-wise analysis [21,35]. These await
future research.
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Appendix A

A.1. Proof of Proposition 4

Under the assumptions of the proposition, we have

ln b(1)(u, v) = λ1(u − 1) + λ2(v − 1) = (λ1, λ2)(u − 1, v − 1)⊤,

where λ1 = E(ϵ1,t ) and λ2 = E(ϵ2,t ). By Eq. (9) we get

ln b(∞)(u, v) =

∞∑
h=1

ln b(h)(u, v) =

∞∑
h=1

(λ1, λ2)(A⊤)h(u − 1, v − 1)⊤ = (λ1, λ2)(Id − A⊤)−1(u − 1, v − 1)⊤,

which is the log pgf of a bivariate independent Poisson distribution, with expectations (λ1,∞, λ2,∞)⊤ = (Id−A)−1(λ1, λ2)⊤.
Let us now check that (Yt ) = (X1,t +X2,t ) follows a Poisson INAR(1) process. The joint pgf of (X1,t−1 +X2,t−1, X1,t +X2,t )

is

E(uX1,t−1+X2,t−1vX1,t+X2,t )

= E
[
uX1,t−1+X2,t−1

{
1 + (α11 + α21)(v − 1)

}X1,t−1
{
1 + (α12 + α22)(v − 1)

}X2,t−1e(λ1+λ2)(v−1)
]

= exp
[
λ1,∞

{
u
(
1 + (α11 + α21)(v − 1)

)
− 1

}
+ λ2,∞

{
u
(
1 + (α12 + α22)(v − 1)

)
− 1

}
+ (λ1 + λ2)(v − 1)

]
= exp

[
{λ1,∞(α11 + α21) + λ2,∞(α12 + α22)}uv + u {λ1,∞(1 − α11 − α21) + λ2,∞(1 − α12 − α22)}  

=λ1+λ2 by Eq. (15)

+ (λ1 + λ2)(v − 1) − λ1,∞ − λ2,∞

]
(A.1)

A quick calculation shows that for a univariate Poisson INAR(1) process Zt satisfying Zt = α ◦ Zt−1 + ηt , where α◦ is
the univariate binomial thinning operator, and ηt is i.i.d. P(λ) distributed, the joint pgf is

E(uZt vZt−1 ) = exp
{ αλ

1 − α
uv + λu + λv − λ

(
1 +

1
1 − α

)}
. (A.2)

By matching Eqs. (A.1) and (A.2), we conclude that X1,t + X2,t follows a Poisson INAR(1) with λ = λ1 + λ2, and
α = 1 − (λ1 + λ2)/(λ1,∞ + λ2,∞).
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A.2. Proof of Proposition 5

The marginal expectation is obtained by taking expectation in Eq. (5). By the covariance decomposition formula, we
get [

var(X1,t ), ∗

cov(X1,t , X2,t ), var(X2,t )

]
=

[
var(α11X1,t−1 + α12X2,t−1), ∗

cov(α11X1,t−1 + α12X2,t−1, α21X1,t−1 + α22X2,t−1), var(α21X1,t−1 + α22X2,t−1)

]
+ E

[
var(X1,t |Xt−1), ∗

cov(X1,t , X2,t |Xt−1), var(X2,t |Xt−1)

]
= A

[
var(X1,t ), ∗

cov(X1,t , X2,t ), var(X2,t )

]
A⊤

+ γϵ + E(X1,t )γ12 + E(X2,t )γ34.

Solving this linear matrix equation yields solution (16). Finally, Eq. (17) is a direct consequence of Eq. (5).

A.3. The first two marginal moments of BINAR(p) model

Under the stationarity condition, the marginal expectation of a BINAR(p) model satisfies

E(Xt ) =

p∑
i=1

AiE(Xt ) + E(ϵt ) ⇔ E(Xt ) = (Id −

p∑
i=1

Ai)−1E(ϵt ).

where matrix Id −
∑p

i=1 Ai is invertible by conditions (19) and (20). The covariance matrix can be obtained using the
companion CaR(1) form. More precisely, let us denote by V the 2p×2p covariance matrix of (Yt ) = (Xt ,Xt−1, . . . ,Xt−p+1),
viz.

V = E
[
{Yt − E(Yt )}{Yt − E[Yt ]}

⊤

]
=

⎡⎢⎢⎣
Γ (0) Γ (1) · · · Γ (p − 1)
Γ ⊤(1) Γ (0) · · · Γ (p − 2)

· · · · · · · · · · · ·

Γ (p − 1)⊤ Γ (p − 2)⊤ · · · Γ (0)

⎤⎥⎥⎦ ,

where Γ (h) is the auto-covariance function of (Xt ) at lag h. Since Yt has the VAR(1) representation

E(Yt |Yt−1) =

⎡⎢⎢⎣
A1 A2 · · · Ap
I2 0 · · · · · ·

0 I2 · · · · · ·

...
...

...
...

⎤⎥⎥⎦
  

=A

Yt−1 +

⎡⎢⎢⎢⎢⎣
E(ϵt )
0
...
...

⎤⎥⎥⎥⎥⎦ ,

we have

V = AVA⊤
+

⎡⎢⎢⎢⎢⎣
γϵ +

p∑
i=1

{
E(X1,t )γ12,i + X2,tγ34,i

}
0 · · · 0

0 0 0 0
· · · · · · · · · · · ·

0 0 0 0

⎤⎥⎥⎥⎥⎦ , (A.3)

where γ12,i, γ34,i are defined in a similar way as in (6). Thus V =
∑

∞

h=0(A
⊤)hV0Ah, where V0 is the second matrix term on

the right-hand side of (A.3).

A.4. Proof of Proposition 7

We first reformulate the condition given in Proposition 7 in terms of the eigenvalues of A.

Lemma 4. For any matrix A = (αi,j)1≤i,j≤2 with nonnegative entries only, the two following sets of conditions are equivalent:

(i) α11 < 1, α22 < 1, and (1 − α11)(1 − α22) > α12α21.
(ii) The eigenvalues of A are smaller than 1 in modulus.

Proof. See [21]. □
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Let ϵt be an i.i.d. sequence of innovations and (Z1,t,i,j, Z2,t,i,j), (Z3,t,i,j, Z4,t,i,j) i.i.d. bivariate Bernoulli variables for any
t ∈ Z, i, j ∈ N. Then we define the doubly indexed sequences (X (n)

t ) = (X (n)
1,t , X

(n)
2,t )

⊤
t recursively by

∀t X (n)
t =

⎧⎪⎪⎨⎪⎪⎩
ϵt if n = 0,

ϵt +

n∑
i=1

X (n−1)
1,t−i∑
j=1

[
Z1,t,i,j
Z2,t,i,j

]
+

n∑
i=1

X (n−1)
2,t−i∑
j=1

[
Z3,t,i,j
Z4,t,i,j

]
if n > 0,

We will show that for each t , the n-indexed sequence (X (n)
t )n converges almost surely to a limit Xt , and that the limiting

process Xt satisfies Eq. (24) .

A.5.1. Almost sure and L1(P) convergence of X (n)
t

By induction (with respect to n), it is easily checked that for each t ,

X (n)
1,t ≥ X (n−1)

1,t and X (n)
2,t ≥ X (n−1)

2,t ≥ 0.

Thus for each t , both n-indexed sequences (X (n)
1,t )n and (X (n)

2,t )n converge almost surely, to limits, say, X1,t and X2,t ,
respectively. Let us now consider the L1(P) convergence. We have

E(X (n)
t ) = E(ϵt ) +

n∑
i=1

AiE(X
(n−1)
t ) ≤ E(ϵt ) +

n∑
i=1

AiE(X
(n)
t ) ≤ E(ϵt ) +

( ∞∑
i=1

Ai  
=A∞

)
E(X (n)

t ),

where the inequalities hold component-wise. Thus we have (Id−A∞)E(X (n)
t ) ≤ E(ϵt ). Then we remark that the 2 × 2 matrix

(Id − A∞) is invertible and all the entries of its inverse are nonnegative. Thus we can multiply both sides by (Id − A∞)−1

and deduce that

E(X (n)
t ) ≤ (Id − A∞)−1E(ϵt )

is upper bounded when n increases. Hence (X (n)
t ) converges also in L1(P) to Xt for each t by monotonous convergence

theorem.

A.5.2. Strict and second-order stationarity of process (Xt )t
By definition, for each n, process (X (n)

t )t is strictly stationary. Thus the limiting process Xt is also strictly stationary. By
the L1(P) convergence, Xt is mean-stationary. To show the covariance stationarity, let us check that the sequence (X (n)

1,t )n
is bounded in L2(P). We have

var(X (n)
1,t ) = var(ϵ1,t ) + var

( n∑
i=1

X (n−1)
1,t−i∑
j=1

Z1,t,i,j +
n∑

i=1

X (n−1)
2,t−i∑
j=1

Z3,t,i,j
)

≤ var(ϵ1,t ) + E
{( n∑

i=1

X (n−i)
1,t−i∑
j=1

Z1,t,i,j +
n∑

i=1

X (n−i)
2,t−i∑
j=1

Z3,t,i,j
)2}

≤ var(ϵ1,t ) + E
{( n∑

i=1

X (n)
1,t∑

j=1

Z1,t,i,j +
n∑

i=1

X (n)
2,t∑

j=1

Z3,t,i,j
)2}

≤ C1 + var
{( ∞∑

i=1

α11,i

)
X (n)
1,t +

( ∞∑
i=1

α12,i

)
X (n)
2,t

}
,

where the constant C1 is independent of t and n. Similar upper bounds can also be obtained for var(X (n)
1,t ) and var(X (n)

2,t )
and in matrix form we have

Vn ≤ A∞VnA⊤

∞
+ C,

where Vn is the covariance matrix of X (n)
t , and C is a constant matrix. Thus we get

Vn ≤

∞∑
i=0

Ai
∞
C(A⊤

∞
)i,

which is uniformly bounded. Thus by the dominated convergence theorem, (X (n)
t )n also converges to Xt in L2(P).
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A.5.3. Conditional distribution of Xt given its past
It remains to check that the above limiting process Xt satisfies the representation (24). It suffices to show that, for a

fixed t , the sequence

r (n)t = ϵt +

n∑
i=1

X1,t−i∑
j=1

(Z1,t,i,j, Z2,t,i,j)⊤ +

n∑
i=1

X2,t−i∑
j=1

(Z3,t,i,j, Z4,t,i,j)⊤

converges to Xt almost surely, or equivalently, since

Xt − r (n)t = Xt − X (n)
t + X (n)

t − r (n)t ,

it suffices to show that r (n)t −X (n)
t converges to zero almost surely. But this sequence is non-decreasing, thus it suffices to

find an almost sure convergent subsequence. Its L1(P) norm is

E(r (n)t − X (n)
t ) =

n∑
i=1

AiE(Xt ) −

n∑
i=1

AiE(X
(n)
t ) −→ 0

when n → ∞. Thus (r (n)t − X (n)
t )n converges in L1(P) and admits a subsequence that is almost surely convergent. Thus

the process Xt satisfies Eq. (24).

A.5.4. The necessary condition of stationarity
Thus under conditions (25), (26), (27), the BINAR(∞) process exists and is stationary. Let us now show that these

conditions are also necessary. Taking expectation in (24), we get

E(Xt ) = E(ϵt ) + A∞E(Xt ), (A.4)

thus all the entries of A∞ are finite, hence inequality (25). Finally, by iteration we have

∀n≥1 E(Xt ) = (Id + A∞ + A2
∞

+ · · · + An
∞
)E(ϵt ) + An+1

∞
E(Xt ).

Thus the largest eigenvalue of A∞ is smaller than 1 in modulus. Then by Lemma 4 we get conditions (26) and (27).

A.5. Proof of Lemma 2

Under Assumption 1, each δi(Ft−1) lies between 0 and 1, thus F (i|Ft−1) is nondecreasing, and bounded above by 1. Its
lower limit is positive under the stationarity condition since

F (0|Ft−1) = exp
{ ∞∑

i=1

X1,t−i ln(1 + q1,i − α11,i − α21,i) +

∞∑
i=1

X2,t−i ln(1 + q2,i − α12,i − α22,i)
}

≥ exp
{
−

∞∑
i=1

X1,t−i ln(1 − α11,i − α21,i) −

∞∑
i=1

X2,t−i ln(1 − α12,i − α22,i)
}
. (A.5)

As α11,i + α21,i → 0 and α12,i + α22,i → 0 when i → ∞, for large i, we have

− ln(1 − α12,i − α22,i) > −2(α12,i + α22,i), − ln(1 − α12,i − α22,i) > −2(α12,i + α22,i).

Then since
∑

∞

i=1(α12,i + α22,i)X1,t−i +
∑

∞

i=1(α12,i + α22,i)X2,t−i is finite, the right-hand side of (A.5) is positive.

A.6. Proof of Lemma 3

The proof is based on the fact that the process Xt has the weak VAR(∞) representation

Xt =

∞∑
i=1

AiXt−i + ηt ,

where ηt is a weak white noise. Then we revert this VAR(∞) representation into the Vector MA(∞) representation
Xt = (Id+

∑
∞

i=1 BiLi)ηt , where Bj are matrices and L is the lag operator. By mimicking the proof of Theorem 2 in [43], we
can show that Bi = O(id)D for some constant matrix D and the autocovariance function also decays at the same hyperbolic
rate id.

A.7. Additional figures

See Figs. 7 and 8.
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Fig. 7. ACF/CCF of the constrained BINAR(∞) process defined by Eqs. (26) and (31), with parameters given by the MLE estimator.

Fig. 8. ACF/CCF of the Pearson’s residuals computed using the observed data and the same estimated model as in Fig. 7.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2019.02.015.
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