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Count time serie example
Monthly number of poliomyelitis cases in the United States from 1970 to 1983
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Standard models of count times series

Standard Poisson INGARCH models assume Yt |F t−1 ∼P (λt)
with

λt =ω0 +
q∑

i=1
α0iYt−i +

p∑
j=1

β0jλt−j

and Ft−1 =σ (Yu,u< t). One can also consider other conditional
distributions, in particular the Negative Binomial INGARCH
model.

The (first order) INAR model assumes

Yt =B(Yt−1,α)+ integer-valued distribution.
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Models for positive times series

When (Yt) is valued in [0,∞), an ARMA-type model

Yt =λt +εt,

where λt =E(Yt | Yu,u< t) and (εt) is a white noise, is not
convenient (it is difficult to impose Yt ≥ 0).
Engle and Russell (1998) proposed the Autoregressive
Conditional Duration (ACD) model

Yt =λtzt,

where (zt) iid positive with Ezt = 1.
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Limitations of the multiplicative ACD form

The Multiplicative Error Model (MEM) form

Yt =λtzt,

where λt ∈Ft−1 =σ(Yu,u< t), with

zt and λt independent,

is generally impossible when Yt is valued in N. Even for
durations (or volumes or any positive time series), the MEM
structure is restritive. For instance, it implies that

Var (Yt |Ft−1) ∝λ2
t .
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Stationarity and ergodicity
Existence of moments and mixing
Testing the multiplicative form

Framework of the present paper

Let positive exogenous variables Xt = (x1,t, . . . ,xr,t), the
information set Ft−1 =σ (Yu,Xu,u< t).
We relax the multiplicative structure (necessary for count time
series), and assume that the condition distribution depends on
a parametric time-varying conditional mean

λt (θ0) :=E (Yt |Ft−1) =λ (Yu,Xu,u< t;θ0) , t ∈Z.

For instance

λt(θ) =ω+
q∑

i=1
αiYt−i +

p∑
j=1

βjλt−j +
r∑

i=1
πixi,t−1,

with

θ = (
ω,α1, . . . ,βq,π1, . . . ,πr

) ∈ [0,∞)m, m= p+q+ r+1.
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First objective

We want conditions for stationarity and ergodicity.

The main difficulty is that, contrary to standard time series
models,

there exists no explicit solution Yt = f (θ0,zt,zt−1, . . . );
the theory of the Markov chains with continuous state
space does not apply.
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Few references

Ferland, Latour and Oraichi (2006) for Poisson-INGARCH;
Neumann (2011) for absolute regularity of nonlinear
Poisson autoregressions, and Doukhan and Neumann
(2017) for a broader class;
Franke (2010) and Doukhan, Fokianos and Tjostheim
(2012, 2013) for weak dependence of nonlinear Poisson;
Douc, Doukhan and Moulines (2013), Douc, Roueff and
Sim (2015, 2016) and Sim, Douc and Roueff (2016) for
observation-driven Markov processes;
Gonçalves, Mendes-Lopes and Silva (2015) for stationarity
and ergodicity of compound Poissont INGARCH;
Davis and Liu (2016) for stationarity and mixing when the
conditional distribution belongs to the one-parameter
exponential family.
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Methodology

Davis and Liu (2016) builds explicit solutions as limits of
functions of quantiles of an iid sequence;
We adopt the same strategy, but

Ï the conditional distribution is not restricted to the
one-parameter exponential family;

Ï the dynamics of the conditional mean is more general;
Ï exogenous variables are allowed.
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Central assumption
Stochastic-equal-mean order property

Let Fλ be a family of cdf indexed by the mean λ= ∫
ydFλ(y) ∈R.

Assume that the stochastic order is equal to the mean order:

λ≤λ∗ ⇒ Fλ(y) ≥Fλ∗(y), ∀y ∈R.

Equivalently,

λ≤λ∗ ⇒ F−
λ

(u) ≤F−
λ∗(u), ∀u ∈ (0,1).

where F−
λ

is the quantile function of cdf Fλ.
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Examples of cdf with stochastic-equal-mean order

any distribution belonging to the one-parameter linear
exponential family

gλ(y) = h(y)exp
{
ηy−A(η)

}
1{y≥0},

for some scalar natural parameter η= η(λ);
Negative Binomial NB(r,p)

P(Y = k) = Γ(k+ r)

k!Γ(r)
pr (

1−p
)k , k ∈N,

when r = pλ/(1−p)) and p is fixed;
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Examples of stochastic-equal-mean order (continued)

Gamma distributions: for fixed a
Ï Γ(a,a/λ) belongs to the exponential family;
Ï Γ(aλ,a) also satisfies the property, but does not belong to

the exponential family.

Remark: an ACD cannot have the distribution
Yt |Ft−1 ∼ Γ(aλt,a), because Var(Yt |Ft−1) =λt/a.
any zero-inflated version of a cdf satisfying the
stochastic-equal-mean order property:

P(Y ≤ y) = τ+ (1−τ)Fλ(y), y≥ 0.
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Stationarity and ergodicity in the INGARCH-X case

Stationarity condition
There exists a stationary (and ergodic) sequence (Yt) such that
EYt <∞ and the conditional cdf satisfies stochastic-equal-mean
order property with mean

λt =ω+
q∑

i=1
αiYt−i +

p∑
j=1

βjλt−j +
r∑

i=1
πixi,t−1,

where (Xt) stationary and ergodic with E‖Xt‖ <∞, if and only if

q∑
i=1

αi +
p∑

j=1
βj < 1. idea of the proof

Note that the condition does not depend on π.
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Moments in the INGARCH(1,1) case

Moment conditions
Let the previous assumptions with p= q= 1 and r = 0. Assume
that, for Y ∼Fλ(y) and some integer `≥ 2, there exist
nonnegative coefficients aj(0),aj(1), . . . ,aj(j) for all j≤ ` such that

EY j =
j∑

i=0
aj(i)λi for j= 1, . . . ,`.

We have EY`
t <∞ if and only if

∑̀
j=0

a(j)

(
`

j

)
αjβ`−j < 1,

where a(0) = a(1) = 1 and a(j) = aj(j) for j≥ 2.

Note that the condition does not depend on π.Aknouche, Francq Time series with equal conditional stochastic and mean orders
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Examples

If Yt |Ft−1 ∼NB(pλt/(1−p),p) then Yt admits moments of
any order iff α+β< 1.
If Yt |Ft−1 ∼NB(r,r/(λt + r)) then Yt admits a moment of

order 2 iff (α+β)2 + α2

r
< 1,

order 3 iff (α+β)3 + 3α2(α+β)

r
+ 2α3

r2 < 1,

order 4 iff (α+β)4 + 6α2(α+β)2

r
+ α3(11α+8β)

r2 + 6α4

r3 < 1.
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Moment conditions for the INGARCH(1,1) process
with NB(1,pt) conditional distribution
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Extension to nonlinear conditional means

The stationarity conditions are the same if

λt = g(Yt−1, . . . ,Yt−q,λt−1, . . . ,λt−p)+π(Xt−1),

with ∣∣∣g(y1, . . . ,yq,λ1, . . . ,λp)−g(y′1, . . . ,y′q,λ′
1, . . . ,λ′

p)
∣∣∣

≤
q∑

i=1
αi|yi −y′i|+

p∑
j=1

βj|λj −λ′
j|.
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Absolute regularity coefficients

Let B be the Borel sigma-algebra of R∞, and let the β-mixing
coefficient

β(h) =E sup
A∈B

|P {(Yh,Yh+1, . . . ) ∈A | Y0,Y−1, . . . }−P {(Yh,Yh+1, . . . ) ∈A}| .

Mixing
Under the previous assuptions (stochastic-equal-mean order
+
∑
αi +βi < 1), and if Yt(Ω) =N,

β(h) ≤Kρh, h≥ 0.

for some K > 0 and ρ ∈ (0,1).
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Motivation for testing the MEM specification

Assuming
Yt =λtzt,

with λt =E (Yt |Ft−1) independent of zt is
impossible when Yt(Ω) =N (the support of zt depends on
λt);
restrictice when Yt(Ω) = [0,∞) (the shape of the conditional
distribution is time-constant);

Ï zt = Yt/λt and λt are always uncorrelated (when 2nd order
moments exist);

Ï zt and λt may be dependent (when the conditional density
of Yt given Ft−1 is not of the form f (·/λt)/λt).

⇒ a test for nonlinear dependence
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Distance covariance
Székely et al. (2007), Rizzo and Székely (2016), Davis et al. (2018)

Based on observations Y1, . . . ,Yn, the null

H0 : zt and λt are independent,

is rejected for large values of

dCov2
n =

∫ ∣∣ϕ̂z,λ(t,s)− ϕ̂z(t)ϕ̂λ(s)
∣∣2 w(t,s)dtds,

where ϕ̂z,λ, ϕ̂z and ϕ̂λ are respectively empirical estimators of
the characteristic functions of (zt,λt), zt and λt, and the
weighting function w(t,s) is, for instance, proportional to t−2s−2.
The distribution under the null is approximated by a bootstrap
procedure.
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S&P 500 transaction volume (3/10/2013 to 3/10/2018)
Testing the MEM structure of an ACD(2,2)
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Greenhouse gas concentrations
GHG every 6 hours from May 10 to July 31, 2010, and empirical PACF
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Extended ACD model for the GHG series

The empirical PACF suggests an (extended) ACD(1,0) model.
Several zero-inflated conditional Gamma distributions have
been tried, leading to

λt =ω+αYt−1, Yt |Ft−1 ∼ τδ0 + (1−τ)Γ(λtb,b),

with maximum-likelihood estimates (MLE) ω̂= 0.0024, α̂= 0.834,
τ̂= 0.186 and b̂= 245.2.

Remark: The main interest is often on the conditional mean,
but the MLE of the mean parameter may be sensitive to a
misspecification of the conditional distribution.
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Second objective

We want to estimate the mean parameter θ0, but we want to be
totally agnostic about the conditional distribution of the
observations.
Indeed, there is no obvious choice for the conditional variance

υt (ξ0) :=Var (Yt |Ft−1) = υ (Yu,Xu,u< t;ξ0) .

In particular, for the Poisson conditional distribution we have
υt =λt but count time series often exhibit (conditional)
overdispersion.

We are thus interested in estimators that could be consistent
even if the conditional variance is misspecified.
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Existing misspecification-consistent estimators

Let λ̃t(θ) =λ(Yt−1,Xt−1, . . . ,Y1,X1, Ỹ0,X̃0, . . . ;θ) for given initial
values Ỹ0,X̃0, . . .
Estimators based on the exponential family are generally
consistent, in particular the Poisson Quasi-MLE (PQMLE)

θ̂PQML = argmax
θ∈Θ

n∑
t=1

{
Yt log

(
λ̃t (θ)

)− λ̃t (θ)
}

,

or the Negative Binomial QMLE (NBQMLE)

θ̂NBQML = argmax
θ∈Θ

n∑
t=1

Yt log

(
λ̃t (θ)

r0 + λ̃t (θ)

)
− r0 log

{
r0 + λ̃t (θ)

}
,

studied by Ahmed and Francq (2016) and Aknouche,
Bendjeddou and Touche (2018) (without exogenous variables).
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More general QMLE and Estimating Functions QLE

A exponential family based QMLE satisfies

sn(θ̂) = 0, sn(θ) =
n∑

t=1

Yt − λ̃t (θ)

υ̃t(θ)

∂λ̃t(θ)

∂θ
,

where υt(θ) is the conditional variance of a given member of the
exponential family (Wedderburn (1974) and Gouriéroux,
Monfort and Trognon (1984)).
With the more general concept of optimal estimating functions
of Godambe (1960, 1985), υt(θ) may be a general conditional
variance.
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Motivations

PQMLE and NBQMLE are consistent for estimating θ0 under
very mild regularity conditions, but they may be inefficient when
the conditional distribution is misspecified. Moreover, due to
positivity constraints, their asymptotic distributions are not
easily tractable when some coefficients are equal to zero.

The aim of this paper is to propose and study alternative
estimators which enjoy the same consistency property as the
QMLE’s when the conditional distribution is misspecified, but
have simpler asymptotic distributions when one or several
coefficients are null and gain in efficiency when υt is well
specified.
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Weighted LSE

Given a theoretical weight function wt =w(Yt−1,Xt−1, . . . ) > 0 and
its observation-proxy

w̃t =w(Yt−1,Xt−1 . . . ,Y1,X1, Ỹ0,X̃0 . . . ) ≥w> 0,

let the weighted least square estimator (WLSE)

θ̂1WLS = argmin
θ∈Θ

L̃n (θ,w̃) ,

where

L̃n (θ,w̃) = 1
n

n∑
t=1

l̃t (θ,w̃t) with l̃t (θ,wt) =
(
Yt−λ̃t(θ)

)2

wt
.

The weighting sequence w̃= {w̃t}t≥1 allows the WLSE to be
CAN without too strong moment conditions, and may reduce
the asymptotic variance of the estimator.
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Two-stage WLSE

It can be seen that the optimal choice of w̃ is (proportional to) υ.
Assuming an hypothetical conditional variance of the form

υ∗
(
Yt−1,Xt−1, ...;ξ∗0

)= υ∗t (
ξ∗0

)
,

the optimal sequence of weights may be estimated by{
ŵt,n

}
t , ŵt,n = υ∗

(
Yt−1,Xt−1, ...,Y1,X1, Ỹ0,X̃0, . . . ; ξ̂n

)
,

where ξ̂n is a first-step estimator of ξ∗0 (which is often function of
the estimator θ̂1WLS of θ0, and eventually of estimates of some
extra parameter ς0). This leads to a two-stage WLSE, defined
by

θ̂2WLS = argmin
θ∈Θ

L̃n
(
θ,

{
ŵt,n

}
t
)

.
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Poisson-type 2WLSE

If a conditional variance approximately proportional to the
conditional mean is expected, one can employ the two-stage
estimator θ̂2WLS = θ̂(P)

2WLS where

θ̂(P)
2WLS = argmin

θ∈Θ

n∑
t=1

(
Yt − λ̃t (θ)

)2

ŵt,n
, ŵt,n = λ̃t

(
θ̂1WLS

)
.
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NB-type 2WLSE

If the conditional variance is expected to be approximately
proportional to that of the NB(r,r/(r+λt)), one can consider the
two-stage estimator θ̂2WLS = θ̂(NB)

2WLS where

θ̂(NB)
2WLS = argmin

θ∈Θ

n∑
t=1

(
Yt − λ̃t (θ)

)2

ŵt,n
, ŵt,n = λ̂t

(
1+ λ̂t

r̂

)
,

with

r̂ =
(

1
n

n∑
t=1

(Yt − λ̂t)2 − λ̂t

λ̂2
t

)−1

, λ̂t = λ̃t(θ̂1WLS).
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Double-Poisson-type 2WLSE

If the conditional variance is expected to be inversely
proportional the conditional mean, as for the Double-Poisson,
one can also consider

θ̂(Inv)
2WLS = argmin

θ∈Θ

n∑
t=1

(
Yt − λ̃t (θ)

)2

ŵt,n
, ŵt,n = 1/λ̃t

(
θ̂1WLS

)
.
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INARCH-type conditional mean

Assume the AR/INARCH-type conditional mean

λt (θ) = θ′χt, χt =
(
1,Yt−1, ...,Yt−q

)′ .

Example: The INAR model

Yt =α01 ◦Yt−1 + ...+α0p ◦Yt−p +εt, t ∈Z,

where {εt, t ∈Z} is an iid sequence of non-negative
integer-valued random variables with mean E (εt) =ω0 > 0 and
the symbol ◦ denotes the binomial thinning operator.
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Explicit WLSEs

The WLSEs have explicit forms for estimating INARCH:

θ̂1WLS =
(

n∑
t=1

χtχ
′
t

wt

)−1 n∑
t=1

Ytχt

wt
.

Similarly, we have the following explicit 2WLSE

θ̂(P)
2WLS =

(
n∑

t=1

χtχ
′
t

χ′tθ̂1WLS

)−1 n∑
t=1

Ytχt

χ′tθ̂1WLS

θ̂(NB)
2WLS =

 n∑
t=1

χtχ
′
t

χ′tθ̂1WLS

(
1+ χ′

tθ̂1WLS
r̂

)

−1

n∑
t=1

Ytχt

χ′tθ̂1WLS

(
1+ χ′

tθ̂1WLS
r̂

)
θ̂(Inv)

2WLS =
(

n∑
t=1

χ′tθ̂1WLSχtχ
′
t

)−1 n∑
t=1

χ′tθ̂1WLSYtχt.
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Assumptions for CAN of the WLS

Stationarity and ergodicity:
A1 Strict stationarity and ergodicity of {(Yt,Xt), t ∈N}.

Regularity conditions on λt(·) and wt(·), moments conditions:
A2–A8 technical assumptions linear INGARCH case

Boundary conditions:
A9 The true parameter θ0 belongs to the interior of Θ.
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Asymptotic distribution of the WLSE

CAN of the WLSE
Under the assumptions A1-A5,

θ̂1WLS → θ0 a.s. as n→∞.

Under A1-A9, as n→∞
p

n
(
θ̂1WLS −θ0

) d→N (0,Σ) Σ= J−1 (θ0,w)I (θ0,w)J−1 (θ0,w) .

I (θ0,w) =E
(
υt
w2

t

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
, J (θ0,w) =E

(
1
wt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
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Asymptotic distribution of the two-stage WLSE

Additional assumptions are needed because, contrary to wt,
ŵt,n is not Ft−1-measurable.
Let υ̃∗t (ξ) = υ∗ (

Yt−1,Xt−1, ..., Ỹ0,X̃−1, . . . ;ξ
)
, so that ŵt,n = υ̃∗t (ξ̂n).

When ξ̂n → ξ∗0 and some additions assumptions hold
( technical assumptions ), the 2WLSE has the asymptotic distribution of
the WLSE with wt = υ∗t (ξ∗0 ).
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CAN of the 2WLSE

Under A1-A3, A4∗ and A5 θ̂2WLS → θ0 a.s. as n→∞.
If in addition A6, A7∗, A8∗ and A9 hold,

p
n
(
θ̂2WLS −θ0

) d→N (0,Σ) Σ= J−1 (θ0,w)I (θ0,w)J−1 (θ0,w) .

Consistent estimators of J and I are

Ĵ = 1
n

n∑
t=1

1
ŵt,n

∂λ̃t(θ̂2WLS)

∂θ

∂λ̃t(θ̂2WLS)

∂θ′
,

Î = 1
n

n∑
t=1

{
Xt − λ̃t(θ̂2WLS)

}2

ŵ2
t,n

∂λ̃t(θ̂2WLS)

∂θ

∂λ̃t(θ̂2WLS)

∂θ′
.
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Two-step WLSE with minimum variance

Optimal 2WLSE
If in addition the conditional variance is well specified up to a
positive constant, that is ξ∗0 = ξ0 and υ∗(·) = kυ(·) for some k > 0,
then A6 can be replaced by A6∗ and

p
n
(
θ̂2WLS −θ0

) d→N
(
0,I−1

)
as n→∞.

Moreover the matrix Σ− I−1 is positive semi-definite.

I = I (θ0,υ) =E
(

1
υt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
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Comparison with the PQMLE

Under A1-A3, assumptions similar to A6-A8, and A9 with
positivity constraints on λ̃(·), Ahmad and Francq (2016)
established CAN of the PQMLE when there is no exogenous
variables, and obtained

p
n
(
θ̂PQML −θ0

) L→
n→∞ N (0,ΣP) , ΣP = J−1

P IPJ−1
P

with

IP =E
(
υt(θ0)
λ2

t (θ0)
∂λt(θ0)∂λt(θ0)

∂θ∂θ′

)
and JP =E

(
1

λt(θ0)
∂λt(θ0)∂λt(θ0)

∂θ∂θ′

)
.
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Comparison with the PQMLE (continued)

Since IP = I(θ0,ω) and JP = J(θ0,ω) with ω= {λt}, we deduce that

The optimal WLSE is never asymptotically less efficient
than the PQMLE
If the conditional variance is well specified, the two-stage
WLSE is asymptotically more efficient than the PQMLE, in the
sense that the matrix ΣP − I−1 is positive semi-definite.

Aknouche, Francq Time series with equal conditional stochastic and mean orders



Extended count and ACD models
One and two-stage WLSE

Numerical illustrations

Definition
Asymptotic behavior
Efficiency

Optimality for linear exponential distributions

Recall that the set {Fλ, λ ∈Λ} constitutes a one-parameter linear
exponential family if for all λ ∈Λ

P(X = k) = h(k)eη(λ)k−a(λ), k ∈N,

Examples: Fλ ∼P (λ) (then λ= eη), or Fλ ∼NB(r,p) with
p= r/(λ+ r)) and r is fixed.

Efficiency of the 2WLSE for the exponential family

Assume the MLE is CAN, the distribution of Yt | {λt =λ} has the
previous linear exponential form, and λt(θ0) belongs almost
surely to the interior of Λ. The optimal two-stage WLSE is then
asymptotically as efficient as the MLE of θ0.
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The WLS estimators avoid boundary problems

PQMLE and NBQMLE are CAN under similar assumptions.
However, because of the presence of log

(
λ̃t (θ)

)
, the condition

λ :N∞×Θ→ [λ,∞) for some λ> 0

is imposed for the QMLE. In the INGARCH(1,1) case

λt(θ) =ω+αYt−1 +βλt−1(θ),

one has to impose ω≥λ, α≥ 0 and β≥ 0. When β0 = 0 (INARCH
case), A9 is not satisfied. The PQMLE then has a nonstandard
asymptotic distribution (see Ahmad and Francq, 2016).
For the WSLE, it is possible to have λ̃t (θ) < 0 for some values of
θ, and thus A9 is not really restrictive.
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MSE-like loss

Selecting the weighting sequence ŵt,n by minimizing in (ŵt,n) the
MSE-like loss

min
c

n∑
t=1

{(
Yt − λ̂t

)2 −cŵt,n

}2 =
n∑

t=1

{(
Yt − λ̂t

)2 − ĉnŵt,n

}2
,

with

ĉn =
∑n

t=1

{(
Yt − λ̂t

)2
ŵt,n

}2

∑n
t=1 ŵ2

t,n
,

does not work very well in practice, certainly because the
existence of high-order moments is required.
The presence of ĉn comes from the fact that the optimal weights
are of the form wt = cVar(Yt |Ft−1) with c> 0.
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QLIKE loss

Inspired by Patton (2011), we thus selected the two-stage
WLSE θ̂∗2WLS of weighting sequence ŵt,n which minimizes the
QLIKE loss

n∑
t=1

(
Yt − λ̂t

)2

ĉnŵt,n
+ log

(
ĉnŵt,n

)
, ĉn = 1

n

n∑
t=1

(
Yt − λ̂t

)2

ŵt,n
.

In agreement with Patton, we found that the method based on
the QLIKE loss works better than that based on the MSE.
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Double-Poisson INARCH(3)
N = 1000 replications of length n= 500

Table: Bias and RMSE of estimators of the mean parameters

ω α2 α3
Bias RMSE Bias RMSE Bias RMSE

θ̂PQML 0.836 0.960 -0.011 0.053 -0.039 0.065
θ̂NBQML 1.130 1.294 -0.016 0.069 -0.053 0.089
θ̂1WLS 0.462 0.596 -0.006 0.043 -0.022 0.047
θ̂(P)

2WLS 0.851 0.984 -0.013 0.055 -0.039 0.066
θ̂(NB)

2WLS 1.006 1.200 -0.019 0.070 -0.044 0.080
θ̂(Inv)

2WLS 0.248 0.479 -0.004 0.041 -0.012 0.041
θ̂∗2WLS 0.248 0.479 -0.004 0.041 -0.012 0.041

Aknouche, Francq Time series with equal conditional stochastic and mean orders



Extended count and ACD models
One and two-stage WLSE

Numerical illustrations

Data driven choice of the weighting sequence
Monte Carlo experiments
Conclusion

Computation time for estimating an INARCH(q)
Sample size n= 500

Table: CPU time in seconds

q= 3 q= 6 q= 12 q= 24
θ̂PQML 0.0242 0.0452 0.1044 0.3968
θ̂NBQML 0.0444 0.0992 0.2398 0.8440
θ̂1WLS 0.0052 0.0064 0.0052 0.0066
θ̂(P)

2WLS 0.0098 0.0094 0.0134 0.0202
θ̂(NB)

2WLS 0.0092 0.0106 0.0150 0.0198
θ̂(Inv)

2WLS 0.0092 0.0134 0.0146 0.0194
θ̂∗2WLS 0.0330 0.0384 0.0532 0.0740
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Reliability of the asymptotic theory in finite samples
Sample size n= 500

Table: Comparing RMSE to Mean Asymptotic Standard Error
(MASE), and PCT to the nominal level α= 5% for α02 = 0 and to 100%
for β0 > 0

α02 β0
RMSE MASE PCT RMSE MASE PCT

θ̂PQML 0.058 0.077 6.4 0.093 0.103 99.8
θ̂NBQML 0.059 0.078 6.4 0.094 0.105 99.5
θ̂1WLS 0.078 0.078 6.7 0.102 0.102 99.6
θ̂(P)

2WLS 0.076 0.076 6.4 0.099 0.100 99.8
θ̂(NB)

2WLS 0.078 0.077 6.9 0.103 0.101 99.3
θ̂(Inv)

2WLS 0.082 0.082 7.0 0.108 0.108 99.2
θ̂∗2WLS 0.082 0.082 7.0 0.108 0.108 99.2
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Reliability of the asymptotic theory in finite samples
Sample size n= 2000

Table: Comparing RMSE to MASE, and (PouCenTage of Rejection)
PCT to the nominal level α= 5% for α02 = 0 and to 100% for β0 > 0

α02 β0
RMSE MASE PCT RMSE MASE PCT

θ̂PQML 0.028 0.038 5.6 0.042 0.048 100
θ̂NBQML 0.029 0.038 5.8 0.043 0.049 100
θ̂1WLS 0.038 0.038 5.9 0.047 0.048 100
θ̂(P)

2WLS 0.037 0.038 5.7 0.046 0.047 100
θ̂(NB)

2WLS 0.038 0.038 5.7 0.047 0.047 100
θ̂(Inv)

2WLS 0.041 0.041 5.9 0.050 0.051 100
θ̂∗2WLS 0.041 0.041 5.9 0.050 0.051 100
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Conclusion

For positive time series with time-varying conditional mean,
simple stationarity and ergodicity conditions exist under

the stochactic-equal-mean order condition;
moment and mixing conditions are also available;
the multiplicative form of standard ACD-type models is
questionable.
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Conclusion

The WLS estimators do not require the whole knowledge of the
conditional distribution. Compared to the Poisson QMLE or NB
QMLE, the WLSE presents the advantages of

being of higher efficiency in some situations;
being asymptotically efficient when the conditional
distribution belongs to the linear exponential family;
having a standard asymptotic normal distribution even
when one or several coefficients of the conditional mean
are equal to zero;
being explicit and requiring no optimisation routine for
INARCH models.

Thanks for your attention , !
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Assumptions for consistency of the WLS

This assumption is discussed in the last section:
A1 Strict stationarity and ergodicity of {(Yt,Xt), t ∈N}.
Asymptotic irrelevance of the initial values:
A2 Letting at = supθ∈Θ

∣∣λ̃t (θ)−λt (θ)
∣∣, a.s.

limt→∞
{
supθ∈Θλt (θ)+Yt +1

}
at = 0.

Identifiability condition:
A3 λt (θ) =λt (θ0) a.s. if and only if θ = θ0.
Asymptotic irrelevance of the initial values:
A4 Almost surely, as t →∞

|wt − w̃t|
{

1+Y2
t + sup

θ∈Θ
λ2

t (θ)

}
→ 0.

Choice of the weight function:
A5 E

(
υ1
w1

)
<∞ (with υt =Var (Yt |Ft−1)).
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Extra assumptions for AN of the WLS

Information matrices:
A6 The matrices I (θ0,w) =E

(
υt
w2

t

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
and

J (θ0,w) =E
(

1
wt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
exist and J (θ0,w) is invertible.

Smoothness of the condition mean and moments:
A7 Almost surely, the function λt(·) admits continuous
second-order derivatives in a neighbourhood V (θ0) of θ0, and
we have Ew−1

t sup
θ∈V(θ0)

{Yt −λt(θ)}2 <∞,

Ew−1
t sup

θ∈V(θ0)

∥∥∥∥∂2λt(θ)

∂θ∂θ′

∥∥∥∥2

<∞, Ew−1
t sup

θ∈V(θ0)

∥∥∥∥∂λt(θ)

∂θ

∂λt(θ)

∂θ′

∥∥∥∥<∞.
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Extra assumptions for AN of the WLS (continued)

Asymptotic irrelevance of the initial values:
A8 Letting bt = supθ∈Θ

∥∥∂λ̃t (θ)/∂θ−∂λt (θ)/∂θ
∥∥, the sequences

bt

{
Yt + sup

θ∈Θ
|λt(θ)|

}
, at sup

θ∈Θ

∥∥∥∥∂λt(θ)

∂θ

∥∥∥∥
and

|wt − w̃t|sup
θ∈Θ

∥∥∥∥∂λt(θ)

∂θ

∥∥∥∥{
Yt + sup

θ∈Θ
|λt(θ)|

}
are a.s. of order O (t−κ) for some κ> 1/2.
Boundary conditions:
A9 The true parameter θ0 belongs to the interior of Θ. return
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Extra assumptions for two-stage WLSE

Additional assumptions are needed because, contrary to wt,
ŵt,n is not Ft-measurable.
Let υ̃∗t (ξ) = υ∗ (

Yt−1,Xt−1, ..., Ỹ0,X̃−1, . . . ;ξ
)
, so that ŵt,n = υ̃∗t (ξ̂n),

and let wt = υ∗t (ξ∗0 ).

A4∗ There exists σ> 0 such that, almost surely, wt >σ and
ŵt,n >σ for n large enough. Assume ξ̂n is a strongly consistent
estimator of ξ∗0 , the function υ∗t (·) is almost surely continuously
differentiable,

sup
ξ∈V(ξ∗0 )

∣∣υ̃∗t (ξ)−υ∗t (ξ)
∣∣≤Kρt E

1
wt

sup
ξ∈V(ξ∗0 )

∥∥∥∥∂υ∗t (ξ)

∂ξ

∥∥∥∥sup
θ∈Θ

{Yt −λt(θ)}2 <∞,

where K is a positive random variable F0-measurable, ρ ∈ [0,1),
and V(ξ∗0 ) is a neighborhood of ξ∗0 . Moreover, assume

E sup
θ∈Θ

|Yt −λt(θ)|s <∞ for some s> 0.
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Extra assumptions for two-stage WLSE (continued)

A6∗ The matrix I =E
(

1
υt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
exists and is invertible.

A7∗= A7 +
p

n
(
ξ̂n −ξ∗0

)=OP(1) and

E
1
wt

sup
ξ∈V(ξ∗0 )

∥∥∥∥∂υ∗t (ξ)

∂ξ

∥∥∥∥2
[

1+ sup
θ∈V(θ0)

{Yt −λt(θ)}2

]
<∞.

A8∗= A8 by replacing |w̃t −wt| by supξ∈V(ξ∗0 ) |υ̃t(ξ)−υt(ξ)|, for
some neighborhood V(ξ∗0 ) of ξ∗0 . return

Aknouche, Francq Time series with equal conditional stochastic and mean orders



Extended count and ACD models
One and two-stage WLSE

Numerical illustrations

Data driven choice of the weighting sequence
Monte Carlo experiments
Conclusion

Invertibility and identifiability assumptions

λt =ω+
q∑

i=1
αiYt−i +

p∑
j=1

βjλt−j +π′Xt−1,

In addition to the previous conditions, assume∑p
j=1βj < 1 for all θ ∈Θ,

q> 0,

Aθ0 (z) :=
q∑

i=1
α0izi and Bθ0 (z) := 1−

p∑
i=1

β0izi

have no common root, at least one α0i 6= 0 for i= 1, . . . ,q,
and β0p 6= 0 if α0q = 0.
for all h, Yt | {Xu,u< t+h;Yu,u< t} is not degenerated,
π′Xt is not degenerated when π 6= 0.
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Other assumptions

For instance, one can take the weighting sequence

w̃t = c+aYt−1 +bw̃t−1

with c> 0, a> 0 and b ∈ (0,1).

All the assumptions required for consistency of the WLSE are
satisfied.
If EY4

t <∞, the assumptions for the CAN are satisfied.

The condition EY4
t <∞ is implied by the stationarity condition∑q

i=1α0i +
∑p

j=1β0j < 1 and E‖Xt‖4 <∞
in the Poisson case Yt |Ft−1 ∼P (λt)

when Yt |Ft−1 ∼NB(rt,p) with rt =λtp/(1−p)
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Moment condition for the NB distribution with fixed r

Consider the INGARCH(1,1) case

λt(θ0) =ω0 +α0Yt−1 +β0λt−1(θ0).

When Yt |Ft−1 ∼NB(r,pt) with pt = r/(r+λt) we have EY2
t <∞ if

and only if

(α0 +β0)2 + α2
0
ς0

< 1,

and EY4
t <∞ if and only if

(α0 +β0)4 + 6α2
0(α0 +β0)2

r
+ α3

0(11α0 +8β0)

r2 + 6α4
0

r3 < 1.

return
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Construction of the stationarity solution
in the case p= q= 1

Let (Ut) iid U[0,1] and the quantile function F−
λ

.
For t ∈Z, let Y (k)

t =λ(k)
t = 0 when k ≤ 0 and, for k > 0, let

Y (k)
t =F−

λ(k)
t

(Ut), λ(k)
t =ω+αY (k−1)

t−1 +βλ(k−1)
t−1 +π>Xt−1.

Under the stochastic-equal-mean order condition,

E
∣∣∣λ(k)

t −λ(k−1)
t

∣∣∣= (
α+β)

E
(
λ(k−1)

t−1 −λ(k−2)
t−1

)
= (

α+β)k−1
ω.

It follows that the sequence
{
λ(k)

t

}
k

converges in L1 and a.s to
the stationary solution λt. return
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