Soit un portefeuille de valeur $V_t = \sum_{i=1}^d a_i p_{t,i}$, où les variations des facteurs de risque $\log p_{t,i}$ sont notées $r_{t,i} = \log p_{t,i}/p_{t-1,i}$.

Le DGP: Le vecteur $r_t = (r_{t,1}, \dots, r_{t,d})'$ suit le modèle CCC-GARCH(1,1) défini par

 $r_t = H_t^{1/2} \eta_t, \quad H_t = D_t R D_t$

où η_t est un bruit blanc fort de loi de Student standardisée, c'est-à-dire de la forme $\eta_t = \sqrt{\frac{\nu-2}{\chi_\nu^2}} \mathcal{N}(0, I_d)$ pour $\nu > 2$ avec des notations et hypothèses usuelles, R est une matrice de corrélation, D_t est une matrice diagonale de terme général $\sqrt{h_{i,t}}$ tel que

$$h_{t,i} = \omega_i + \alpha_i r_{t,i}^2 + \beta_i h_{t-1,i}.$$

On suppose que les paramètres $\omega_i > 0$, $\alpha_i > 0$ et $\beta_i \geq 0$ ainsi que ν sont tels que r_t soit strictement stationnaire de variance conditionnelle H_t . La figure 1 représente une trajectoire de V_t et la figure 2 représente les trajectoires correspondantes pour les d = 3 composantes de r_t .

Les divers jeux de paramètres: Nous avons répliqué (Iter = 1,...,7) de façon indépendante des simulations de taille $n = 20\,000$. Le portefeuille initial est de valeur $V_0 = 3\,000$, répartis de façon équilibrée entre les d = 3 actifs: $a_i p_{0,i} = 1\,000$ pour i = 1, 2, 3. Les premières $n_1 = 4\,000$ observations sont utilisées pour estimer les paramètres de la volatilité. Les observations restantes servent au backtesting. Dans toutes expériences, nous avons simulé des bruit η_t de loi de Student trivariée à $\nu = 7$ degrés de liberté.

- Jeu A Les paramètres de volatilité sont proches $10^4\omega = (0.04, 0.04, 0.04)$, $\alpha = (0.04, 0.03, 0.05)$, $\beta = (0.89, 0.9, 0.88)$ et les actifs sont très corrélés R(1, 2) = -0.855, R(1, 3) = 0.855 et R(2, 3) = -0.81.
- Jeu B Un actif est très persistent, pas les deux autres $10^4\omega = (0.04, 0.04, 0.04)$, $\alpha = (0.04, 0.03, 0.15)$, $\beta = (0.95, 0.0, 0.0)$. L'actif persistent n'est pas corrélé avec les 2 autres R(1, 2) = 0, R(1, 3) = 0 et R(2, 3) = 0.9.

La perte et les VaR (non conditionnelle, conditionnelle univariée et conditionnelle multivariée): Si on note $\epsilon_t = \log V_t/V_{t-1}$ le log-rendement du portefeuille, la perte à horizon 1 est

$$L_{t,t+1} = V_t - V_{t+1} = V_t (1 - e^{\epsilon_{t+1}}),$$

et, en supposant $Vt \geq 0$, la VaR est

$$VaR_{t,1}(\alpha) = V_t(1 - e^{q_{t,1}(\alpha)}), \tag{1}$$

où $q_{t,1}(\alpha)$ est le α -quantile de la loi du rendement futur ϵ_{t+1} (sachant V_t pour une VaR non conditionnelle, ou sachant $\{V_u, u \leq t\}$ pour une VaR conditionnelle univariée, c'est-à-dire sachant les valeurs passées du portefeuille).

Pour exploiter les relations multivariées de r_t et de ses valeurs passées, on note que

$$L_{t,t+1} = V_t - V_{t+1} = \sum_{i=1}^{d} a_i p_{t,i} - \sum_{i=1}^{d} a_i p_{t,i} e^{r_{t+1,i}} = \sum_{i=1}^{d} a_i p_{t,i} \left(1 - e^{r_{t+1,i}}\right).$$

Par linéarisation on obtient

$$L_{t,t+1} \simeq -\sum_{i=1}^{d} a_i p_{t,i} r_{t+1,i}.$$

Puisque la loi de η_t est sphérique, on a

$$\operatorname{VaR}_{t,1}(\alpha) \simeq - \left\| (a_1 p_{t,1}, \dots, a_d p_{t,d}) H_{t+1}^{1/2} \right\| F_{\eta}^{-1}(\alpha)$$

$$= \left\| (a_1 p_{t,1}, \dots, a_d p_{t,d}) H_{t+1}^{1/2} \right\| F_{|\eta|}^{-1}(1 - 2\alpha), \tag{2}$$

où $F_{\eta}^{-1}(\alpha)$ désigne le α -quantile de la loi d'une composante de η_t , et $F_{|\eta|}^{-1}(\alpha)$ désigne le α -quantile de la loi de la valeur absolue d'une composante de η_t .

Les méthodes:

• HS (pour historique) désigne la méthode qui estime

$$\operatorname{VaR}_{t,1}(\alpha) := F_{L_{t,t+1}}^{-}(1-\alpha) = V_t F_{L_{t,t+1}/V_t}^{-}(1-\alpha)$$

par V_t multiplié par le $(1-\alpha)$ -quantile empirique des K=250 dernières pertes relatives $L_{t-s,t-s+1}/V_{t-s}$ pour $s=1,\ldots,K$. Les pertes relatives ont un aspect plus stationnaire que les pertes brutes.

• RM (pour RiskMetrics) estime la VaR en approchant le quantile de (1) par $\hat{\sigma}_{t+1}\Phi^{-1}(1-\alpha)$ où $\hat{\sigma}_t$ est obtenue récursivement par $\hat{\sigma}_t^2 = 0.06\epsilon_{t-1}^2 + 0.94\hat{\sigma}_{t-1}^2$.

- GARCH estime le quantile de (1) par $\hat{\sigma}_{t+1}\hat{F}_t^{-1}(1-\alpha)$. La volatilité est obtenue récursivement par l'équation GARCH $\hat{\sigma}_t^2 = \hat{\omega} + \hat{\alpha}\epsilon_{t-1}^2 + \hat{\beta}\hat{\sigma}_{t-1}^2$, où les paramètres sont estimés par QMV sur les n_1 premières valeurs. Le quantile $\hat{F}_t^{-1}(1-\alpha)$ est celui des résidus $\hat{\eta}_u = \epsilon_u/\hat{\sigma}_u$ pour $u = r_0 + 1, \ldots, t$ (avec $r_0 = 10$ pour atténuer l'effet des valeurs initiales).
- CCC (pour corrélation conditionnelle constante): à partir des rendements trivariés r_1, \ldots, r_{n_1} , on estime par QMV les paramètres d'un GARCH à corrélation conditionnelle constante. Ceci permet d'obtenir un estimateur \hat{H}_t de la volatilité et les résidus $\hat{\eta}_t = \hat{H}_t^{-1/2} \epsilon_t$. On estime la VaR par (2), en remplaçant H_{t+1} par \hat{H}_{t+1} et $F_{|\eta|}^{-1}(1-2\alpha)$ par le $(1-2\alpha)$ -quantile empirique des valeurs absolues des composantes des résidus disponibles à la date t.

La figure 3 montre les estimations de la VaR obtenues par ces différentes méthodes sur un petit extrait d'une simulation.

Les résultats:

- Les résultats varient beaucoup d'une simulation à l'autre. Ceci s'explique par le fait que la série V_t n'est pas stationnaire, et que les trajectoires des différentes simulations sont très peu semblables.
- Les tableaux montrent clairement que les fréquences des exceptions sont loin des valeurs nominales pour les méthodes HS et RM (sauf pour RM dans le cas $\alpha = 5\%$, ce qui s'explique par le fait que le quantile de la loi de Student normalisé est proche de celui de la normale dans le cas $\alpha = 5\%$). Ces méthodes semblent donc peu performantes.
- Les méthodes GARCH et CCC sont assez comparables pour le jeu de paramètres A. Pour le point de vue du régulateur, la méthode CCC est préférable car la fréquence des rejets est souvent en dessous de la proportion attendue. Pour le jeu de paramètres B, la méthode CCC est supérieure, avec des fréquences de dépassement de la VaR correctes et des VaR moyennes bien inférieures. Ceci n'est pas étonnant car le modèle GARCH univarié opère sur une série agrégée, et ne peut donc tenir compte du fait que les 3 facteurs de risque ont des dynamiques bien distinctes.

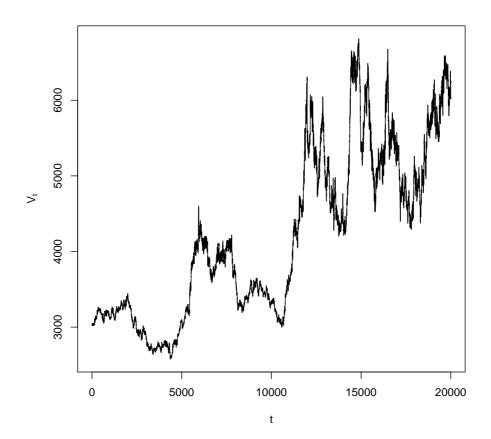
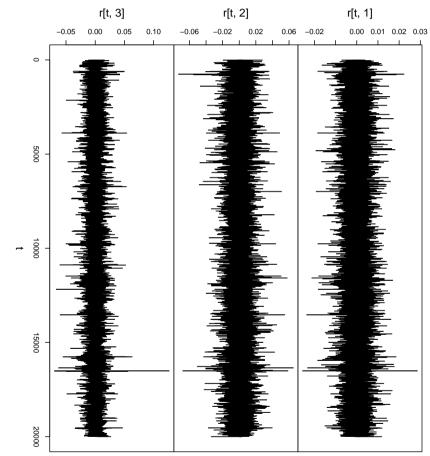



Figure 1: Une simulation (un scénario) pour l'évolution du porte feuille de valeur initiale $V_0=3000$ (jeu de paramètre A).

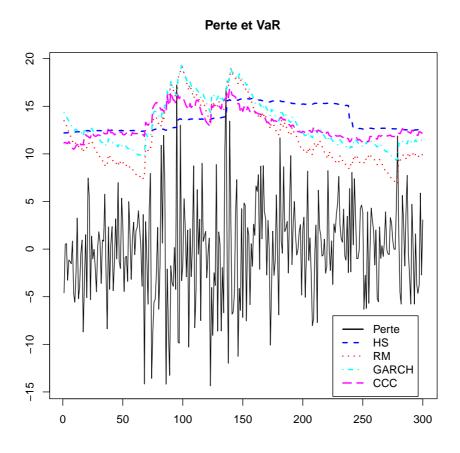


Figure 3: La perte et les différentes estimations de la VaR sur une période de 300 observations.

Table 1: Backtesting pour le jeu de paramètres A et le niveau $\alpha=5\%$.

Iter	Violations (en %)				VaR moyenne relative (en %)			
	HS	RM	GARCH	CCC	HS	RM	GARCH	CCC
1	5.5	5.0	6.0	4.9	0.536	0.549	0.501	0.551
2	5.4	5.1	5.2	4.9	0.606	0.618	0.595	0.620
3	5.4	5.2	6.5	5.1	0.683	0.703	0.637	0.689
4	5.5	5.3	5.7	4.8	0.809	0.829	0.791	0.832
5	5.5	4.9	5.1	4.3	0.567	0.591	0.570	0.603
6	5.4	5.4	5.6	5.1	0.903	0.906	0.886	0.908
7	5.5	5.3	5.9	5.3	0.571	0.583	0.542	0.564
Iter	V	Valeur p	du test LF	R_{uc}	Valeur	p du te	est LR_{ind}	(en %)
Iter	V HS	aleur p	du test LI GARCH	R_{uc}	Valeur HS	p du te	est LR_{ind} GARCH	(en %)
Iter		-				-		` /
	$_{ m HS}$	RM	GARCH	CCC	HS	RM	GARCH	CCC
1	HS 0.81	RM 88.33	GARCH 0.00	CCC 51.35	HS 0.05	RM 51.21	GARCH 52.89	CCC 1.05
1 2	HS 0.81 2.38	RM 88.33 61.13	GARCH 0.00 18.21	CCC 51.35 40.30	HS 0.05 0.01	RM 51.21 6.26	GARCH 52.89 0.84	CCC 1.05 15.70
1 2 3	HS 0.81 2.38 1.10	RM 88.33 61.13 26.29	GARCH 0.00 18.21 0.00	CCC 51.35 40.30 44.70	HS 0.05 0.01 72.92	RM 51.21 6.26 11.94	GARCH 52.89 0.84 21.73	CCC 1.05 15.70 3.64
1 2 3 4	HS 0.81 2.38 1.10 0.99	RM 88.33 61.13 26.29 7.80	GARCH 0.00 18.21 0.00 0.01	CCC 51.35 40.30 44.70 20.17	HS 0.05 0.01 72.92 18.71	RM 51.21 6.26 11.94 48.17	GARCH 52.89 0.84 21.73 72.84	CCC 1.05 15.70 3.64 60.27

Table 2: Backtesting pour le jeu de paramètres A et le niveau $\alpha=1\%$.

Iter	Violations (en %)				VaR moyenne relative (en %)			
	$_{\mathrm{HS}}$	RM	GARCH	CCC	HS RM GARCH CCC			
1	1.4	1.7	1.4	1.0	0.841 0.776 0.800 0.872			
2	1.4	1.8	1.1	0.9	0.929 0.872 0.929 0.974			
3	1.4	1.6	1.3	0.9	1.033 0.992 1.005 1.074			
4	1.4	1.8	1.2	0.9	1.249 1.170 1.274 1.318			
5	1.5	1.6	1.0	0.8	0.896 0.834 0.922 0.955			
6	1.4	1.7	1.1	0.9	1.373 1.279 1.412 1.439			
7	1.5	1.6	1.2	1.0	0.887 0.824 0.874 0.893			
Iter	Va	aleur p	du test L	R_{uc}	Valeur p du test LR_{ind} (en %)			
	$_{\mathrm{HS}}$	RM	GARCH	CCC	HS RM GARCH CCC			
1	0.00	0.00	0.00	52.20	37.93 34.53 60.36 64.36			
2	0.00	0.00	7.39	14.50	60.36 21.66 23.17 53.06			
3	0.00	0.00	0.00	19.62	42.15 22.13 56.87 55.28			
4	0.00	0.00	1.37	14.50	13.68 60.99 32.19 53.06			
5	0.00	0.00	58.02	1.74	20.25 68.95 5.97 13.99			
6	0.00	0.00	24.00	6.11	0.23 72.30 5.91 3.82			
7	0.00	0.00	0.72	75.02	75.54 0.30 2.79 63.41			

Table 3: Backtesting pour le jeu de paramètres B et le niveau $\alpha=1\%$.

Iter	Violations (en %)				VaR moyenne relative (en %)			
	$_{\mathrm{HS}}$	RM	GARCH	CCC	$_{\mathrm{HS}}$	RM	GARCH	CCC
1	1.6	1.7	0.9	1.0	1.368	1.301	1.443	1.423
2	1.3	1.8	0.7	1.0	0.378	0.349	0.428	0.381
3	1.5	1.8	0.7	1.0	0.562	0.526	0.624	0.585
4	1.6	1.7	1.1	0.7	3.090	2.936	3.223	3.421
5	1.5	1.7	1.0	0.9	3.940	3.597	4.013	4.150
6	1.4	1.7	0.2	0.9	0.407	0.378	0.575	0.417
7	1.6	1.6	1.0	0.9	1.889	1.718	1.899	1.943
Iter	Va	aleur p	du test Li	R_{uc}	Valeur	p du te	est LR_{ind} ((en %)
Iter	Va HS	aleur p	du test Li GARCH	R_{uc}	Valeur HS	p du te	est LR _{ind} (GARCH	(en %) CCC
Iter		-				-		` /
	HS	RM	GARCH	CCC	HS	RM	GARCH	CCC
1	HS 0.00	RM 0.00	GARCH 29.53	CCC 75.10	HS 61.36	RM 38.42	GARCH 58.66	CCC 55.43
1 2	HS 0.00 0.00	RM 0.00 0.00	GARCH 29.53 0.02	CCC 75.10 99.94	HS 61.36 24.84	RM 38.42 84.89	GARCH 58.66 19.50	CCC 55.43 73.50
1 2 3	HS 0.00 0.00 0.00	RM 0.00 0.00 0.00	GARCH 29.53 0.02 0.06	CCC 75.10 99.94 52.20	HS 61.36 24.84 0.27	RM 38.42 84.89 51.11	GARCH 58.66 19.50 17.99	CCC 55.43 73.50 67.57
1 2 3 4	HS 0.00 0.00 0.00 0.00	RM 0.00 0.00 0.00 0.00	GARCH 29.53 0.02 0.06 13.83	CCC 75.10 99.94 52.20 0.06	HS 61.36 24.84 0.27 6.59	RM 38.42 84.89 51.11 16.77	GARCH 58.66 19.50 17.99 42.00	CCC 55.43 73.50 67.57 86.38