Merits and drawbacks of variance targeting in GARCH models

Christian Francq¹ Lajos Horvath² Jean-Michel Zakoïan³

¹Université Lille 3 http://perso.univ-lille3.fr/~cfrancq

²University of Utah

³CREST

USTHB, Alger

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns

2 Variance Targeting Estimator

- Description of the method
- Asymptotic Properties of the VTE
- Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

3 Conclusion

Properties of Financial Time Series Models for the Volatility of Financial Returns

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns

2 Variance Targeting Estimator

- Description of the method
- Asymptotic Properties of the VTE
- Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

B Conclusion

イロト イポト イヨト イヨト

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts (Mandelbrot (1963))

Non stationarity of the prices

CAC 40, from March 1, 1992 to April 30, 2009

- ∢ ≣ →

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts (Mandelbrot (1963))

Non stationarity of the prices

S&P 500, from March 2, 1992 to April 30, 2009

< 17 ▶

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Possible stationarity of the returns

CAC 40 returns, from March 2, 1992 to February 20, 2009

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Possible stationarity of the returns

S&P 500 returns, from March 2, 1992 to April 30, 2009

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Volatility clustering

CAC 40 returns, from January 2, 2008 to April 30, 2009

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts

Conditional heteroskedasticity (compatible with marginal homoscedasticity and even stationarity)

S&P 500 returns, from January 2, 2008 to April 30, 2009

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts

Dependence without correlation (warning: interpretation of the dotted lines)

Empirical autocorrelations of the CAC returns

★ Ξ > ★ Ξ >

э

Stylized Facts

Dependence without correlation (see FZ 2009

http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/Generalized-Bartlett-Formula.html

for the interpretation of the red lines)

Empirical autocorrelations of the S&P 500 returns

э

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Correlation of the squares

Autocorrelations of the squares of the CAC returns

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Correlation of the squares

Autocorrelations of the squares of the S&P 500 returns

< ∃→

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Tail heaviness of the distributions

Density estimator for the CAC returns (normal in dotted line)

(< ∃) < ∃)</p>

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts Tail heaviness of the distributions

Density estimator for the S&P 500 returns (normal in dotted line)

(< ≥) < ≥)</p>

< 🗇 🕨

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts

Decreases of prices have an higher impact on the future volatility than increases of the same magnitude

Table: Autocorrelations of tranformations of the CAC returns ϵ

h	1	2	3	4	5	6
$\hat{ ho}_{\epsilon}(h)$	-0.01	-0.03	-0.05	0.05	-0.06	-0.02
$\hat{ ho}_{ \epsilon }(h)$	0.18	0.24	0.25	0.23	0.25	0.23
$\hat{\rho}(\epsilon_{t-h}^+, \epsilon_t)$	0.03	0.07	0.07	0.08	0.08	0.12
$\hat{\rho}(-\epsilon_{t-h}, \epsilon_t)$	0.18	0.20	0.22	0.18	0.21	0.15

ヘロア 人間 アメヨア 人口 ア

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stylized Facts

Decreases of prices have an higher impact on the future volatility than increases of the same magnitude

Table: Autocorrelations of tranformations of the S&P 500 returns ϵ

h	1	2	3	4	5	6
$\hat{ ho}_{\epsilon}(h)$	-0.06	-0.07	0.03	-0.02	-0.04	0.01
$\hat{ ho}_{ \epsilon }(h)$	0.26	0.34	0.29	0.32	0.36	0.32
$\hat{\rho}(\epsilon_{t-h}^+, \epsilon_t)$	0.06	0.12	0.11	0.14	0.15	0.16
$\hat{\rho}(-\epsilon_{t-h}^{-}, \epsilon_t)$	0.25	0.28	0.23	0.24	0.28	0.23

<ロト <回 > < 注 > < 注 > 、

Properties of Financial Time Series Models for the Volatility of Financial Returns

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns
- 2 Variance Targeting Estimator
 - Description of the method
 - Asymptotic Properties of the VTE
 - Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

3 Conclusion

イロト イポト イヨト イヨト

Properties of Financial Time Series Models for the Volatility of Financial Returns

Classes of Volatility Models

Amost all the models are of the form

 $\epsilon_t = \sigma_t \eta_t$

where

- (η_t) is an iid (0,1) process
- (σ_t) is a process (volatility), $\sigma_t > 0$
- the variables σ_t and η_t are independent

Two main classes of models:

- GARCH-type (Generalized Autoregressive Conditional Heteroskedasticity): σ_t ∈ σ(ϵ_{t-1}, ϵ_{t-2}, ...)
- Stochastic volatility

・ロト ・ 理 ト ・ ヨ ト ・

Properties of Financial Time Series Models for the Volatility of Financial Returns

Classes of Volatility Models

Amost all the models are of the form

 $\epsilon_t = \sigma_t \eta_t$

where

- (η_t) is an iid (0,1) process
- (σ_t) is a process (volatility), $\sigma_t > 0$
- the variables σ_t and η_t are independent

Two main classes of models:

- GARCH-type (Generalized Autoregressive Conditional Heteroskedasticity): σ_t ∈ σ(ε_{t-1}, ε_{t-2},...)
- Stochastic volatility

ヘロン 人間 とくほ とくほ とう

Properties of Financial Time Series Models for the Volatility of Financial Returns

Definition: GARCH(p, q)

Definition (Engle (1982), Bollerslev (1986))

$$\begin{cases} \epsilon_t = \sigma_t \eta_t \\ \\ \sigma_t^2 = \omega_0 + \sum_{i=1}^q \alpha_{0i} \epsilon_{t-i}^2 + \sum_{j=1}^p \beta_{0j} \sigma_{t-j}^2, \quad \forall t \in \mathbb{Z} \end{cases}$$

where

$$(\eta_t)$$
 iid, $E\eta_t = 0$, $E\eta_t^2 = 1$, $\omega_0 > 0$, $\alpha_{0i} \ge 0$, $\beta_{0j} \ge 0$.

$$\theta_0 = (\omega_0, \alpha_{01}, \ldots, \alpha_{0q}, \beta_{01}, \ldots, \beta_{0p}).$$

イロン 不同 とくほう イヨン

3

Properties of Financial Time Series Models for the Volatility of Financial Returns

GARCH(1,1) simulation

∃⇒

Properties of Financial Time Series Models for the Volatility of Financial Returns

The previous GARCH(1,1) simulation resembles real financial series

Properties of Financial Time Series Models for the Volatility of Financial Returns

Stricty Stationarity

$$\mathbf{A}_{0t} = \begin{pmatrix} \alpha_{01}\eta_t^2 & \cdots & \alpha_{0q}\eta_t^2 & \beta_{01}\eta_t^2 & \cdots & \beta_{0p}\eta_t^2 \\ & I_{q-1} & 0 & & 0 \\ & \alpha_{01} & \cdots & \alpha_{0q} & \beta_{01} & \cdots & \beta_{0p} \\ & 0 & & I_{p-1} & 0 \end{pmatrix}$$

$$\gamma(\mathbf{A_0}) = \lim_{t\to\infty} a.s. \ \frac{1}{t} \log \|A_{0t}A_{0t-1}\dots A_{01}\|.$$

Theorem (Bougerol & Picard, 1992)

The model has a (unique) strictly stationary non anticipative solution iff

$$\gamma(\mathbf{A_0}) < \mathbf{0}.$$

ヘロト ヘワト ヘビト ヘビト

э

Properties of Financial Time Series Models for the Volatility of Financial Returns

Quasi-Maximum Likelihood Estimation

A QMLE of θ is defined as any measurable solution $\hat{\theta}_n$ of

$$\hat{\theta}_n = \arg\min_{\theta\in\Theta} \tilde{\mathbf{I}}_n(\theta),$$

where
$$\tilde{\mathbf{I}}_n(\theta) = n^{-1} \sum_{t=1}^n \tilde{\ell}_t$$
, and $\tilde{\ell}_t = \frac{\epsilon_t^2}{\tilde{\sigma}_t^2} + \log \tilde{\sigma}_t^2$.

Remark

- The constraint $\tilde{\sigma}_t^2 > 0$ for all $\theta \in \Theta$ is necessary to compute $\tilde{I}_n(\theta)$.
- The QMLE is always constrained: the "unrestricted" QMLE does not exist.

・ロン・西方・ ・ ヨン・

Properties of Financial Time Series Models for the Volatility of Financial Returns

Quasi-Maximum Likelihood Estimation

Theorem (Berkes, Horváth and Kokoszka (2003), FZ (2004))

Under appropriate conditions (in particular strict stationarity and $\theta_0 > 0$)

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{L}} \mathcal{N}(0, (E\eta_1^4 - 1)J^{-1}),$$
$$J = E_{\theta_0} \left(\frac{1}{\sigma_t^4(\theta_0)} \frac{\partial \sigma_t^2(\theta_0)}{\partial \theta} \frac{\partial \sigma_t^2(\theta_0)}{\partial \theta'}\right).$$

くロト (過) (目) (日)

Properties of Financial Time Series Models for the Volatility of Financial Returns

Drawbacks of the QMLE

- Require a numerical optimization which is difficult when the number of parameters is large;
- The numerical optimization is sensitive to the choice of the initial value;
- The variance of the estimated model can be far from the empirical variance.

くロト (過) (目) (日)

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns

2 Variance Targeting Estimator

- Description of the method
- Asymptotic Properties of the VTE
- Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

Conclusion

<ロト <問 > < 臣 > < 臣 >

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Variance Targeting Principle Engle and Mezrich (1996)

- Principle of the two-step estimator:
 - The unconditional variance is estimated by the sample variance;
 - 2 The remaining parameters are estimated by QML.

• Advantages:

- Facilitates the numerical optimization by reducing the dimensionality of the parameter space;
- Speeds up the convergence of the optimization routines;
- Ensures a consistent estimate of the long-run variance even when the model is misspecified;
- Provides reasonable initial values for the QMLE.
- Potential drawbacks:
 - Requires stronger assumptions (existence of the variance);
 - Is likely to suffer from efficiency loss.

ヘロト ヘワト ヘビト ヘビト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Variance Targeting Principle Engle and Mezrich (1996)

- Principle of the two-step estimator:
 - The unconditional variance is estimated by the sample variance;
 - 2 The remaining parameters are estimated by QML.
- Advantages:
 - Facilitates the numerical optimization by reducing the dimensionality of the parameter space;
 - Speeds up the convergence of the optimization routines;
 - Ensures a consistent estimate of the long-run variance even when the model is misspecified;
 - Provides reasonable initial values for the QMLE.
- Potential drawbacks:
 - Requires stronger assumptions (existence of the variance);
 - Is likely to suffer from efficiency loss.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Variance Targeting Principle Engle and Mezrich (1996)

- Principle of the two-step estimator:
 - The unconditional variance is estimated by the sample variance;
 - 2 The remaining parameters are estimated by QML.
- Advantages:
 - Facilitates the numerical optimization by reducing the dimensionality of the parameter space;
 - Speeds up the convergence of the optimization routines;
 - Ensures a consistent estimate of the long-run variance even when the model is misspecified;
 - Provides reasonable initial values for the QMLE.
- Potential drawbacks:
 - Requires stronger assumptions (existence of the variance);
 - Is likely to suffer from efficiency loss.

イロト イポト イヨト イヨト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QML

Objectives

- Establish the asymptotic distribution of the VTE in univariate GARCH models
- Provide effective comparisons with the standard QML;
- Discuss the relative merits and drawbacks of the variance targeting method.

イロト イポト イヨト イヨト

æ

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Reparameterization of the Standard GARCH(1,1)

• Standard form:

$$\epsilon_t = \sigma_t \eta_t \qquad \sigma_t^2 = \omega_0 + \alpha_0 \epsilon_{t-1}^2 + \beta_0 \sigma_{t-1}^2,$$

where $\theta_0 = (\omega_0, \alpha_0, \beta_0)'$ is the unknown parameter.

• Alternative form: (with $\gamma_0 = \omega_0/(1 - \alpha_0 - \beta_0)$ when $\alpha_0 + \beta_0 < 1$)

$$\epsilon_t = \sigma_t \eta_t, \qquad \sigma_t^2 = \kappa_0 \gamma_0 + \alpha_0 \epsilon_{t-1}^2 + \beta_0 \sigma_{t-1}^2, \quad \kappa_0 + \alpha_0 + \beta_0 = 1$$

where $\boldsymbol{\vartheta}_{\mathbf{0}} = (\gamma_{\mathbf{0}}, \alpha_{\mathbf{0}}, \kappa_{\mathbf{0}})'$ is the new parameter.

ヘロア 人間 アメヨア 人口 ア

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Definition of the VTE of $\vartheta_0 = (\gamma_0, \lambda'_0)'$ with $\lambda_0 := (\alpha_0, \kappa_0)'$

- First step: $\hat{\gamma}_n = \hat{\sigma}_n^2 := n^{-1} \sum_{t=1}^n \epsilon_t^2$,
- **2** Second step: $\hat{\lambda}_n = \arg \min_{\lambda \in \Lambda} \tilde{I}_n(\lambda)$, where

$$\tilde{\mathbf{I}}_n(\boldsymbol{\lambda}) = n^{-1} \sum_{t=1}^n \ell_{t,n}, \qquad \ell_{t,n} := \ell_{t,n}(\boldsymbol{\lambda}) = \frac{\epsilon_t^2}{\sigma_{t,n}^2} + \log \sigma_{t,n}^2,$$

with

$$\sigma_{t,n}^2 = \sigma_{t,n}^2(\boldsymbol{\lambda}) = \kappa \hat{\sigma}_n^2 + \alpha \epsilon_{t-1}^2 + (1 - \kappa - \alpha) \sigma_{t-1,n}^2$$

and the initial value $\sigma_{0,n}^2 = \sigma_0^2$.

ヘロト ヘアト ヘビト ヘビト

э.

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Standard QMLE of $\vartheta_0 = (\gamma_0, \lambda_0')'$

$$\hat{\vartheta}_n^* = \arg\min_{\vartheta\in\Theta} n^{-1} \sum_{t=1}^n \tilde{\ell}_t(\vartheta),$$

where

$$ilde{\ell}_t(artheta) = rac{\epsilon_t^2}{ ilde{\sigma}_t^2(artheta)} + \log ilde{\sigma}_t^2(artheta),$$

with

$$\tilde{\sigma}_t^2(\boldsymbol{\vartheta}) = \kappa \gamma + \alpha \epsilon_{t-1}^2 + (1 - \kappa - \alpha) \tilde{\sigma}_{t-1}^2(\boldsymbol{\vartheta})$$

and the initial value $\tilde{\sigma}_0^2(\vartheta) = \sigma_0^2$. Note that $\tilde{\sigma}_t^2(\hat{\sigma}_n^2, \lambda) = \sigma_{t,n}^2$.

イロト 不得 とくほ とくほ とう

æ

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns

2 Variance Targeting Estimator

- Description of the method
- Asymptotic Properties of the VTE
- Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

Conclusion

イロト イ理ト イヨト イヨト

 $\label{eq:started_st$

The results are stated for the GARCH(1,1), but remain valid in the general GARCH(p, q) case.

Let the parameter space $\Lambda \subset \{(\alpha, \kappa) \mid \alpha \geq 0, \kappa > 0, \alpha + \kappa \leq 1\}.$

- A1: λ_0 belongs to Λ and Λ is compact.
- A2: $\alpha_0 \neq 0$ and η_t^2 has a non-degenerate distribution.

A3:
$$\alpha_0^2 \left(E \eta_t^4 - 1 \right) + (1 - \kappa_0)^2 < 1.$$

A4: λ_0 belongs to the interior of Λ .

ヘロト ヘ戸ト ヘヨト ヘヨト

	Volatility Mod Variance Targe	lels and QMLE eting Estimato Conclusior	r Asymp Nume	ption of the mo ptotic Propertie rical comparise	ethod es of the VTE on of the VTE and	I QMLE
Assumptions in addition to η_t iid,	${\cal E}\eta_t^2=1,$ [$\omega_0 > 0,$	$\alpha_0 \ge 0,$	$\beta_0 \geq 0,$	$\alpha_0 + \beta_0 <$	1

The results are stated for the GARCH(1,1), but remain valid in the general GARCH(p, q) case.

Let the parameter space $\Lambda \subset \{(\alpha, \kappa) \mid \alpha \geq 0, \kappa > 0, \alpha + \kappa \leq 1\}.$

- A1: λ_0 belongs to Λ and Λ is compact.
- A2: $\alpha_0 \neq 0$ and η_t^2 has a non-degenerate distribution.

A3:
$$\alpha_0^2 \left(E \eta_t^4 - 1 \right) + (1 - \kappa_0)^2 < 1.$$

A4: λ_0 belongs to the interior of Λ .

→ Ξ → < Ξ →</p>

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Asymptotic properties of the GARCH(1,1) VTE

Theorem

Under Assumptions A1-A2 the VTE satisfies $\hat{\vartheta}_n \rightarrow \vartheta_0$ almost surely as $n \rightarrow \infty$ and, under the additional assumptions A3-A4, we have

$$\sqrt{n}\left(\hat{\vartheta}_n-\vartheta_0\right)\stackrel{d}{\to}\mathcal{N}(0,(E\eta_1^4-1)\mathbf{\Sigma}).$$

・ロト ・聞 ト ・ ヨト ・ ヨトー

Volatility Models and QMLE Description of the method Variance Targeting Estimator Conclusion Numerical comparison of the VTE and QM

Form of the VTE asymptotic variance

$$\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{b} & -\boldsymbol{b}\boldsymbol{K}'\boldsymbol{J}^{-1} \\ -\boldsymbol{b}\boldsymbol{J}^{-1}\boldsymbol{K} & \boldsymbol{J}^{-1} + \boldsymbol{b}\boldsymbol{J}^{-1}\boldsymbol{K}\boldsymbol{K}'\boldsymbol{J}^{-1} \end{pmatrix}$$

is non-singular with

$$b = \frac{(\alpha_0 + \kappa_0)^2 \gamma^2 (2 - \kappa_0)}{\kappa_0 \left\{ 1 - \alpha_0^2 \left(E \eta_t^4 - 1 \right) - (1 - \kappa_0)^2 \right\}},$$

$$J = E \left(\frac{1}{\sigma_t^4(\vartheta_0)} \frac{\partial \sigma_t^2(\vartheta_0)}{\partial \lambda} \frac{\partial \sigma_t^2(\vartheta_0)}{\partial \lambda'} \right)_{2 \times 2},$$

$$K = E \left(\frac{1}{\sigma_t^4(\vartheta_0)} \frac{\partial \sigma_t^2(\vartheta_0)}{\partial \lambda} \frac{\partial \sigma_t^2(\vartheta_0)}{\partial \gamma} \right)_{2 \times 1}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

VTE of the usual parameter $\theta_0 = (\omega_0, \alpha_0, \beta_0)'$

Corollary

The VTE of θ_0 satisfies

$$\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right)\overset{d}{
ightarrow}\mathcal{N}(\mathbf{0},(\boldsymbol{E}\eta_{0}^{4}-\mathbf{1})\boldsymbol{L}'\boldsymbol{\Sigma}\boldsymbol{L}),$$

with

$$\boldsymbol{L} = \begin{pmatrix} 1 - \alpha_0 - \beta_0 & 0 & 0 \\ 0 & 1 & -1 \\ \omega_0 (1 - \alpha_0 - \beta_0)^{-1} & 0 & -1 \end{pmatrix}.$$

イロン イボン イヨン イヨン

3

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

VTE and QMLE comparison

Theorem

The QMLE $\hat{\vartheta}_n^*$ satisfies

$$\sqrt{n}\left(\hat{\boldsymbol{\vartheta}}_{n}^{*}-\boldsymbol{\vartheta}_{0}\right)\overset{d}{\rightarrow}\mathcal{N}\left\{\boldsymbol{0},(\boldsymbol{E}\boldsymbol{\eta}_{0}^{4}-1)\boldsymbol{\Sigma}^{*}\right\},$$

where

$$\boldsymbol{\Sigma}^* = \boldsymbol{\Sigma} - (\boldsymbol{b} - \boldsymbol{a})\boldsymbol{C}\boldsymbol{C}',$$

with

$$\boldsymbol{C} = \begin{pmatrix} 1 \\ -\boldsymbol{J}^{-1}\boldsymbol{K} \end{pmatrix}, \qquad \boldsymbol{a} = \left\{ \frac{\kappa_0^2}{(\alpha_0 + \kappa_0)^2} \boldsymbol{E}(\frac{1}{h_t^2}) - \boldsymbol{K}' \boldsymbol{J}^{-1} \boldsymbol{K} \right\}^{-1}.$$

イロト イポト イヨト イヨト

э

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

The VTE is never asymptotically more accurate than the QMLE

Theorem

The asymptotic variance $(E\eta_0^4 - 1)\Sigma$ of the VTE and the asymptotic variance $(E\eta_0^4 - 1)\Sigma^*$ of the QMLE are such that

 $\Sigma - \Sigma^*$ is positive semidefinite, but not positive definite.

ヘロト 人間 ト ヘヨト ヘヨト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Proof that the QMLE is asymptotically more efficient than the VTE

The asymptotic variances of the two estimators are the variances of linear combinations of a same vector:

$$\mathbf{\Sigma}^* = \left\{ E\left(\mathbf{G}\mathbf{S}_t\mathbf{S}_t'\mathbf{G}'\right) \right\}^{-1}, \qquad \mathbf{\Sigma} = E\left(\mathbf{H}\mathbf{S}_t\mathbf{S}_t'\mathbf{H}'\right)$$

where

$$oldsymbol{G} = \left(egin{array}{ccc} oldsymbol{I}_2 & 0 \end{array}
ight), \qquad oldsymbol{H} = \left(egin{array}{ccc} 0 & 0 & 1 \ 0 & oldsymbol{J}^{-1} & -oldsymbol{J}^{-1}oldsymbol{K} \end{array}
ight),$$

and

$$\boldsymbol{S}_{t} = \begin{pmatrix} \boldsymbol{e}\boldsymbol{h}_{t}^{-1} \\ \boldsymbol{h}_{t}^{-1} \frac{\partial \sigma_{t}^{2}}{\partial \boldsymbol{\lambda}} (\boldsymbol{\vartheta}_{0}) \\ \boldsymbol{e}^{-1} \boldsymbol{h}_{t} \end{pmatrix} \qquad \boldsymbol{e} = \frac{\kappa_{0}}{1 - \beta_{0}}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

End of the Proof

We then easily show that

$$\boldsymbol{\Sigma} - \boldsymbol{\Sigma}^* = \boldsymbol{E} \boldsymbol{D}_t \boldsymbol{D}_t'$$

where $\boldsymbol{D}_t = \boldsymbol{\Sigma}^* \boldsymbol{G} \boldsymbol{S}_t - \boldsymbol{H} \boldsymbol{S}_t$.

イロト イポト イヨト イヨト

э

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Cases where VTE and QMLE have the same asymptotic variance

Theorem

Let ϕ be a mapping from \mathbb{R}^2 to \mathbb{R} , which is continuously differentiable in a neighborhood of ϑ_0 . If

$$\begin{pmatrix} 1 & -\boldsymbol{K}'\boldsymbol{J}^{-1} \end{pmatrix} \frac{\partial \phi}{\partial \vartheta}(\vartheta_0) = 0,$$

then the asymptotic distribution of the VTE of the parameter $\phi(\vartheta_0)$ is the same as that of the QMLE.

・ロト ・回 ト ・ ヨト ・ ヨトー

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Cases where VTE and QMLE have the same asymptotic variance

Under the previous condition,

$$\sqrt{n}\left\{\phi(\hat{\vartheta}_n) - \phi(\vartheta_0)\right\} \stackrel{d}{\to} \mathcal{N}\left(0, s^2\right)$$

and

$$\sqrt{n}\left\{\phi(\hat{\vartheta}_n^*)-\phi(\vartheta_0)\right\}\stackrel{d}{\to}\mathcal{N}\left(0,s^2\right),$$

where

$$s^2 = (E\eta_0^4 - 1) rac{\partial \phi}{\partial artheta'} \mathbf{\Sigma} rac{\partial \phi}{\partial artheta}.$$

<ロト <回 > < 注 > < 注 > 、

э

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Outline

Volatility Models and QMLE

- Properties of Financial Time Series
- Models for the Volatility of Financial Returns

2 Variance Targeting Estimator

- Description of the method
- Asymptotic Properties of the VTE
- Numerical comparison of the VTE and QMLE
 - On well specified GARCH models
 - On misspecified models (Long-term predictions and Value-at-Risks)

Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Numerical evaluation of Σ and Σ^*

The asymptotic variance of the VTE

$$\boldsymbol{\Sigma} = \begin{pmatrix} b & -b\boldsymbol{K}'\boldsymbol{J}^{-1} \\ -b\boldsymbol{J}^{-1}\boldsymbol{K} & \boldsymbol{J}^{-1} + b\boldsymbol{J}^{-1}\boldsymbol{K}\boldsymbol{K}'\boldsymbol{J}^{-1} \end{pmatrix}$$

and that of the QMLE, Σ^* , are not numerically computable, even for the simplest model (the ARCH(1)).

→ Approximations of Σ and Σ^* from N = 1,000 replications of simulations of size n = 10,000.

・ 回 ト ・ ヨ ト ・ ヨ ト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Asymptotic variances of the QMLE and VTE for $\vartheta_0 = (\gamma_0, \alpha_0)$ in ARCH(1) models, $\gamma_0 = 1$ and $\eta_t \sim \mathcal{N}(0, 1)$

	$\alpha_0 = 0.$	1 a	$a_0 = 0.55$	$\alpha_0 =$	0.7
QMLE	(2.52 0. (0.51 1.	$ 51 \\ 69 $	5.94 7.11` .11 4.20) (45.27)	14.32 5.02
VTE	(2.52 0. (0.51 1.	51 69) (28 12	.78 12.82 .82 6.74		0

イロト イポト イヨト イヨト

æ

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Asymptotic variances of the QMLE and VTE for $\theta_0 = (\omega_0, \alpha_0)$ in ARCH(1) models, $\omega_0 = 1$ and $\eta_t \sim \mathcal{N}(0, 1)$

	$lpha_{0}=0.1$	$lpha_{0}=$ 0.55	$lpha_{0}=$ 0.7
QMLE	$\begin{pmatrix} 3.5 & -1.4 \\ -1.4 & 1.7 \end{pmatrix}$	$\begin{pmatrix} 5.1 & -2.2 \\ -2.2 & 4.2 \end{pmatrix}$	$\begin{pmatrix} 5.6 & -2.4 \\ -2.4 & 5.1 \end{pmatrix}$
VTE	$\begin{pmatrix} 3.5 & -1.4 \\ -1.4 & 1.7 \end{pmatrix}$	$\begin{pmatrix} 5.1 & -2.1 \\ -2.1 & 9.3 \end{pmatrix}$	∞

・ロト ・四ト ・ヨト ・ヨト

æ

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Sampling distribution of the two estimators on N = 1,000 independent ARCH(1) simulations

n =	500
-----	-----

parameter	true value	estimator	bias	RMSE
ω	1.0	QMLE	0.013	0.102
		VTE	0.012	0.102
α	0.55	QMLE	-0.012	0.092
		VTE	-0.026	0.088
ω	1.0	QMLE	0.012	0.114
		VTE	0.036	0.111
α	0.9	QMLE	-0.012	0.110
		VTE	-0.103	0.089

イロト イポト イヨト イヨト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Sampling distribution of the two estimators on N = 1,000 independent ARCH(1) simulations

n = 10,000

parameter	true value	estimator	bias	RMSE
ω	1.0	QMLE	0.000	0.010
		VTE	0.000	0.010
α	0.55	QMLE	0.000	0.009
		VTE	0.000	0.013
ω	1.0	QMLE	0.000	0.012
		VTE	0.010	0.015
α	0.9	QMLE	0.000	0.011
		VTE	-0.032	0.032

イロト イポト イヨト イヨト

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Comparison on daily stock returns

Index	estimator	ω	α	β
CAC	QMLE	0.033 (0.009)	0.090 (0.014)	0.893 (0.015)
	VTE	0.033 (0.009)	0.090 (0.014)	0.893 (0.015)
DAX	QMLE	0.037 (0.014)	0.093 (0.023)	0.888 (0.024)
	VTE	0.036 (0.013)	0.095 (0.022)	0.888 (0.024)
FTSE	QMLE	0.013 (0.004)	0.091 (0.014)	0.899 (0.014)
	VTE	0.013 (0.004)	0.090 (0.013)	0.899 (0.014)
Nasdaq	QMLE	0.025 (0.006)	0.072 (0.009)	0.922 (0.009)
	VTE	0.025 (0.006)	0.072 (0.009)	0.922 (0.009)
Nikkei	QMLE	0.053 (0.012)	0.100 (0.013)	0.880 (0.014)
	VTE	0.054 (0.012)	0.098 (0.013)	0.880 (0.015)
SP500	QMLE	0.014 (0.004)	0.084 (0.012)	0.905 (0.012)
	VTE	0.014 (0.003)	0.084 (0.011)	0.905 (0.012)

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models

ヘロト ヘワト ヘビト ヘビト

3

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Computation time comparison for estimating GARCH(1,1) models on a set of 11 stock indices

Table: Design 1 and Design 2 correspond to different initial values.

	Design 1	Design 2			
VTE	39.0	55.5			
QMLE	61.6	88.1			
VTE+QMLE	85.1	98.9			
In Design 2, for two series, the QMLE					
leads to a nonoptimal local maximum					

ヘロト 人間 ト ヘヨト ヘヨト

Long-term predictions with misspecified models

Two GARCH(1,1) models are estimated by VTE and by QMLE and are used to compute prediction intervals for ϵ_{n+h} :

$$\left[\sqrt{\hat{\sigma}_{n+h|n}^2}\hat{F}_{\eta}^{-1}(\underline{\alpha}/2), \ \sqrt{\hat{\sigma}_{n+h|n}^2}\hat{F}_{\eta}^{-1}(1-\underline{\alpha}/2)\right],$$

when

$$\epsilon_t = \omega(\Delta_t)\eta_t, \quad \eta_t \text{ iid } \mathcal{N}(0, 1),$$

 (Δ_t) is a Markov chain, independent of (η_t) , with state-space $\{1,2\}$ and transition probabilities

$$P(\Delta_t = 1 | \Delta_{t-1} = 1) = P(\Delta_t = 2 | \Delta_{t-1} = 2) = 0.9.$$

→ Contrary to the QMLE, TVE should guarantee correct predictions over long horizons.

ヘロト ヘアト ヘビト ヘビト

Volatility Models and QMLE Description of the method Variance Targeting Estimator Conclusion Vumerical comparison of the VTE and QMLE

TVE guarantees correct long-term predictions Prediction intervals of the Markov-switching model with different methods

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Value-at-Risk(VaR)

Let V_t be the value of a portfolio at time t. The (conditional) VaR is the $(1 - \underline{\alpha})$ -quantile of the conditional distribution of $L_{t,t+h} = -(V_{t+h} - V_t)$:

$$\mathsf{VaR}_{t,h}(\underline{\alpha}) = \inf \left\{ x \in \mathbb{R} \mid P\left(L_{t,t+h} \leq x \mid V_u, u \leq t \right) \geq 1 - \underline{\alpha} \right\}.$$

Introducing the log-returns $\epsilon_t = \log(V_t/V_{t-1})$,

$$\mathsf{VaR}_{t,h}(\underline{\alpha}) = \left[1 - \exp\left\{q_{t,h}(\underline{\alpha})\right\}\right] V_t,$$

where $q_{t,h}(\underline{\alpha})$ is the $\underline{\alpha}$ -quantile of the conditional distribution of the future returns $\epsilon_{t+1} + \cdots + \epsilon_{t+h}$.

ヘロン ヘアン ヘビン ヘビン

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Estimating long horizon VaR

Lemma

Assume that (ϵ_t) is a strictly stationary process such that $E\epsilon_t = 0$, $\sum_{h=1}^{\infty} {\{\alpha_{\epsilon}(h)\}^{\nu/(2+\nu)} < \infty}$ and $E|\epsilon_t|^{2+\nu} < \infty$ for some $\nu > 0$. Let $Var(\epsilon_t) = \overline{\omega}^2$. We have

$$\lim_{h\to\infty}\sqrt{h}\,\overline{\omega}\,\Phi^{-1}(\underline{\alpha})/q_{t,h}(\underline{\alpha})=1\quad a.s.$$

• horizon 1:

$$\operatorname{VaR}_{t,1}(\underline{\alpha}) = \left[1 - \exp\left\{\sigma_t(\theta_0)F_{\eta}^{-1}(1-\underline{\alpha})\right\}\right]V_t,$$

Iong horizon:

$$\widehat{\operatorname{VaR}}_{t,h}(\underline{\alpha}) = \left[1 - \exp\left\{\sqrt{h}\,\Phi^{-1}(\underline{\alpha})\,\widehat{\overline{\alpha}}\right\}\right] V_t$$

4 ∃ ≥

Description of the method Asymptotic Properties of the VTE Numerical comparison of the VTE and QMLE

Estimating long horizon VaR

Lemma

Assume that (ϵ_t) is a strictly stationary process such that $E\epsilon_t = 0$, $\sum_{h=1}^{\infty} {\{\alpha_{\epsilon}(h)\}}^{\nu/(2+\nu)} < \infty$ and $E|\epsilon_t|^{2+\nu} < \infty$ for some $\nu > 0$. Let $Var(\epsilon_t) = \overline{\omega}^2$. We have

$$\lim_{h\to\infty}\sqrt{h}\,\overline{\omega}\,\Phi^{-1}(\underline{\alpha})/q_{t,h}(\underline{\alpha})=1\quad a.s.$$

horizon 1:

$$\mathsf{VaR}_{t,1}(\underline{\alpha}) = \left[1 - \exp\left\{\sigma_t(\theta_0)F_{\eta}^{-1}(1-\underline{\alpha})\right\}\right]V_t,$$

Iong horizon:

$$\widehat{\mathsf{VaR}}_{t,h}(\underline{\alpha}) = \left[1 - \exp\left\{\sqrt{h} \, \Phi^{-1}(\underline{\alpha}) \, \widehat{\overline{\omega}}\right\}\right] V_t.$$

Volatility Models and QMLE Description of the method Variance Targeting Estimator Conclusion Vumerical comparison of the VTE and QMLE

Estimating long horizon VaR with misspecified models Comparison between the true VaR (black line) computed from the DGP (an HMM model) and the VaR's computed from a GARCH(1,1) estimated by QMLE (red) and VTE (green)

VTE can be recommended because it

- reduces the computational complexity of GARCH estimation;
- is asymptotically less efficient that the QMLE, but can work better in finite sample;
- requires fourth-order moments for asymptotic normality, but continues to work well with lower moments;
- provides good (first step) estimations of real financial series;
- guarantees a consistent estimation of the long-run variance;
- thus guarantees correct long-horizon predictions and VaR's;
- can be an indicator of misspecification if an important discrepancy with the QMLE is observed.

Directions for Future Work

- Extension to other GARCH formulations;
- Extension to multivariate models.
- Other applications where the long-term variance is essential (prediction of the realized volatility).

・ 同 ト ・ ヨ ト ・ ヨ ト