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Stylized Facts (Mandelbrot (1963))
Non stationarity of the prices
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Stylized Facts
Volatility clustering
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Stylized Facts
Conditional heteroskedasticity (compatible with marginal homoscedasticity and even
stationarity)
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Stylized Facts
Dependence without correlation (warning: interpretation of the dotted lines)
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Stylized Facts
Dependence without correlation (see FZ 2009
http://perso.univ-lille3.fr/~cfrancq/Christian-Francq/Generalized-Bartlett-Formula.html

for the interpretation of the red lines)
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Stylized Facts
Correlation of the squares
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Stylized Facts
Tail heaviness of the distributions
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Stylized Facts
Decreases of prices have an higher impact on the future volatility than increases of the
same magnitude

Table: Autocorrelations of tranformations of the CAC returns ε

h 1 2 3 4 5 6
ρ̂ε(h) -0.01 -0.03 -0.05 0.05 -0.06 -0.02
ρ̂|ε|(h) 0.18 0.24 0.25 0.23 0.25 0.23
ρ̂(ε+t−h, |εt |) 0.03 0.07 0.07 0.08 0.08 0.12
ρ̂(−ε−t−h, |εt |) 0.18 0.20 0.22 0.18 0.21 0.15
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Stylized Facts
Decreases of prices have an higher impact on the future volatility than increases of the
same magnitude

Table: Autocorrelations of tranformations of the S&P 500 returns ε

h 1 2 3 4 5 6
ρ̂ε(h) -0.06 -0.07 0.03 -0.02 -0.04 0.01
ρ̂|ε|(h) 0.26 0.34 0.29 0.32 0.36 0.32
ρ̂(ε+t−h, |εt |) 0.06 0.12 0.11 0.14 0.15 0.16
ρ̂(−ε−t−h, |εt |) 0.25 0.28 0.23 0.24 0.28 0.23
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Classes of Volatility Models

Amost all the models are of the form

εt = σtηt

where
(ηt) is an iid (0,1) process
(σt) is a process (volatility), σt > 0
the variables σt and ηt are independent

Two main classes of models:
GARCH-type (Generalized Autoregressive Conditional
Heteroskedasticity): σt ∈ σ(εt−1, εt−2, . . .)

Stochastic volatility
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Definition: GARCH(p, q)

Definition (Engle (1982), Bollerslev (1986))
εt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iε

2
t−i +

∑p
j=1 β0jσ

2
t−j , ∀t ∈ Z

where

(ηt) iid, Eηt = 0, Eη2
t = 1, ω0 > 0, α0i ≥ 0, β0j ≥ 0.

θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p).

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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GARCH(1,1) simulation
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εt = σtηt , ηt iid St5, σ2
t = 0.033 + 0.090ε2

t−1 + 0.893σ2
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t = 1, . . . , n = 4791
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The previous GARCH(1,1) simulation resembles real
financial series
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Stricty Stationarity

A0t =


α01η

2
t · · · α0qη2

t β01η
2
t · · · β0pη2

t
Iq−1 0 0

α01 · · · α0q β01 · · · β0p
0 Ip−1 0

 .

γ(A0) = lim
t→∞

a.s.
1
t

log ‖A0tA0t−1 . . . A01‖.

Theorem (Bougerol & Picard, 1992)

The model has a (unique) strictly stationary non anticipative
solution iff

γ(A0) < 0.
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Quasi-Maximum Likelihood Estimation

A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = arg min
θ∈Θ

l̃n(θ),

where l̃n(θ) = n−1 ∑n
t=1

˜̀t , and ˜̀t =
ε2

t
σ̃2

t
+ log σ̃2

t .

Remark

The constraint σ̃2
t > 0 for all θ ∈ Θ is necessary to compute

l̃n(θ).
The QMLE is always constrained: the "unrestricted" QMLE
does not exist.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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Quasi-Maximum Likelihood Estimation

Theorem (Berkes, Horváth and Kokoszka (2003), FZ (2004))
Under appropriate conditions (in particular strict stationarity
and θ0 > 0)

√
n(θ̂n − θ0)

L→ N (0, (Eη4
1 − 1)J−1),

J = Eθ0

(
1

σ4
t (θ0)

∂σ2
t (θ0)

∂θ

∂σ2
t (θ0)

∂θ′

)
.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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Drawbacks of the QMLE

Require a numerical optimization which is difficult when the
number of parameters is large;
The numerical optimization is sensitive to the choice of the
initial value;
The variance of the estimated model can be far from the
empirical variance.
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Variance Targeting Principle
Engle and Mezrich (1996)

Principle of the two-step estimator:
1 The unconditional variance is estimated by the sample

variance;
2 The remaining parameters are estimated by QML.

Advantages:
Facilitates the numerical optimization by reducing the
dimensionality of the parameter space;
Speeds up the convergence of the optimization routines;
Ensures a consistent estimate of the long-run variance
even when the model is misspecified;
Provides reasonable initial values for the QMLE.

Potential drawbacks:
Requires stronger assumptions (existence of the variance);
Is likely to suffer from efficiency loss.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models



Volatility Models and QMLE
Variance Targeting Estimator

Conclusion

Description of the method
Asymptotic Properties of the VTE
Numerical comparison of the VTE and QMLE

Variance Targeting Principle
Engle and Mezrich (1996)

Principle of the two-step estimator:
1 The unconditional variance is estimated by the sample

variance;
2 The remaining parameters are estimated by QML.

Advantages:
Facilitates the numerical optimization by reducing the
dimensionality of the parameter space;
Speeds up the convergence of the optimization routines;
Ensures a consistent estimate of the long-run variance
even when the model is misspecified;
Provides reasonable initial values for the QMLE.

Potential drawbacks:
Requires stronger assumptions (existence of the variance);
Is likely to suffer from efficiency loss.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models



Volatility Models and QMLE
Variance Targeting Estimator

Conclusion

Description of the method
Asymptotic Properties of the VTE
Numerical comparison of the VTE and QMLE

Variance Targeting Principle
Engle and Mezrich (1996)

Principle of the two-step estimator:
1 The unconditional variance is estimated by the sample

variance;
2 The remaining parameters are estimated by QML.

Advantages:
Facilitates the numerical optimization by reducing the
dimensionality of the parameter space;
Speeds up the convergence of the optimization routines;
Ensures a consistent estimate of the long-run variance
even when the model is misspecified;
Provides reasonable initial values for the QMLE.

Potential drawbacks:
Requires stronger assumptions (existence of the variance);
Is likely to suffer from efficiency loss.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models



Volatility Models and QMLE
Variance Targeting Estimator

Conclusion

Description of the method
Asymptotic Properties of the VTE
Numerical comparison of the VTE and QMLE

Objectives

Establish the asymptotic distribution of the VTE in
univariate GARCH models
Provide effective comparisons with the standard QML;
Discuss the relative merits and drawbacks of the variance
targeting method.
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Reparameterization of the Standard GARCH(1,1)

Standard form:

εt = σtηt σ2
t = ω0 + α0ε

2
t−1 + β0σ

2
t−1,

where θ0 = (ω0, α0, β0)
′ is the unknown parameter.

Alternative form: (with γ0 = ω0/(1− α0 − β0) when
α0 + β0 < 1)

εt = σtηt , σ2
t = κ0γ0+α0ε

2
t−1+β0σ

2
t−1, κ0+α0+β0 = 1

where ϑ0 = (γ0, α0, κ0)
′ is the new parameter.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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Definition of the VTE of ϑ0 = (γ0, λ
′
0)
′

with λ0 := (α0, κ0)
′

1 First step: γ̂n = σ̂2
n := n−1 ∑n

t=1 ε2
t ,

2 Second step: λ̂n = arg minλ∈Λ l̃n(λ), where

l̃n(λ) = n−1
n∑

t=1

`t ,n, `t ,n := `t ,n(λ) =
ε2
t

σ2
t ,n

+ log σ2
t ,n,

with

σ2
t ,n = σ2

t ,n(λ) = κσ̂2
n + αε2

t−1 + (1− κ− α)σ2
t−1,n

and the initial value σ2
0,n = σ2

0.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models



Volatility Models and QMLE
Variance Targeting Estimator

Conclusion

Description of the method
Asymptotic Properties of the VTE
Numerical comparison of the VTE and QMLE

Standard QMLE of ϑ0 = (γ0, λ
′
0)
′

ϑ̂
∗
n = arg min

ϑ∈Θ
n−1

n∑
t=1

˜̀t(ϑ),

where
˜̀t(ϑ) =

ε2
t

σ̃2
t (ϑ)

+ log σ̃2
t (ϑ),

with
σ̃2

t (ϑ) = κγ + αε2
t−1 + (1− κ− α)σ̃2

t−1(ϑ)

and the initial value σ̃2
0(ϑ) = σ2

0. Note that σ̃2
t (σ̂2

n,λ) = σ2
t ,n.
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Assumptions
in addition to ηt iid, Eη2

t = 1, ω0 > 0, α0 ≥ 0, β0 ≥ 0, α0 + β0 < 1

The results are stated for the GARCH(1,1), but remain valid in
the general GARCH(p, q) case.
Let the parameter space Λ ⊂ {(α, κ) | α ≥ 0, κ > 0, α + κ ≤ 1}.
A1: λ0 belongs to Λ and Λ is compact.
A2: α0 6= 0 and η2

t has a non-degenerate distribution.
A3: α2

0
(
Eη4

t − 1
)

+ (1− κ0)
2 < 1.

A4: λ0 belongs to the interior of Λ.

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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Asymptotic properties of the GARCH(1,1) VTE

Theorem

Under Assumptions A1-A2 the VTE satisfies ϑ̂n → ϑ0 almost
surely as n →∞ and, under the additional assumptions A3-A4,
we have √

n
(
ϑ̂n − ϑ0

)
d→ N (0, (Eη4

1 − 1)Σ).

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models
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Form of the VTE asymptotic variance

Σ =

(
b −bK ′J−1

−bJ−1K J−1 + bJ−1KK ′J−1

)
is non-singular with

b =
(α0 + κ0)

2γ2(2− κ0)

κ0
{

1− α2
0

(
Eη4

t − 1
)
− (1− κ0)2

} ,

J = E
(

1
σ4

t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂λ′

)
2×2

,

K = E
(

1
σ4

t (ϑ0)

∂σ2
t (ϑ0)

∂λ

∂σ2
t (ϑ0)

∂γ

)
2×1

.
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VTE of the usual parameter θ0 = (ω0, α0, β0)
′

Corollary
The VTE of θ0 satisfies

√
n

(
θ̂n − θ0

)
d→ N (0, (Eη4

0 − 1)L′ΣL),

with

L =

 1− α0 − β0 0 0
0 1 −1

ω0(1− α0 − β0)
−1 0 −1

 .
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VTE and QMLE comparison

Theorem

The QMLE ϑ̂
∗
n satisfies

√
n

(
ϑ̂
∗
n − ϑ0

)
d→ N

{
0, (Eη4

0 − 1)Σ∗
}

,

where
Σ∗ = Σ− (b − a)CC ′,

with

C =

(
1

−J−1K

)
, a =

{
κ2

0
(α0 + κ0)2 E(

1
h2

t
)− K ′J−1K

}−1

.
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The VTE is never asymptotically more accurate than
the QMLE

Theorem

The asymptotic variance (Eη4
0 − 1)Σ of the VTE and the

asymptotic variance (Eη4
0 − 1)Σ∗ of the QMLE are such that

Σ−Σ∗ is positive semidefinite, but not positive definite.
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Proof that the QMLE is asymptotically more efficient
than the VTE

The asymptotic variances of the two estimators are the
variances of linear combinations of a same vector:

Σ∗ =
{

E
(
GStS′

tG
′)}−1

, Σ = E
(
HStS′

tH
′)

where

G =
(

I2 0
)
, H =

(
0 0 1
0 J−1 −J−1K

)
,

and

St =

 eh−1
t

h−1
t

∂σ2
t

∂λ (ϑ0)
e−1ht

 e =
κ0

1− β0
.
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End of the Proof

We then easily show that

Σ−Σ∗ = EDtD′
t

where Dt = Σ∗GSt − HSt .
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Cases where VTE and QMLE have the same
asymptotic variance

Theorem

Let φ be a mapping from R2 to R, which is continuously
differentiable in a neighborhood of ϑ0. If

(
1 −K ′J−1) ∂φ

∂ϑ
(ϑ0) = 0,

then the asymptotic distribution of the VTE of the parameter
φ(ϑ0) is the same as that of the QMLE.
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Cases where VTE and QMLE have the same
asymptotic variance

Under the previous condition,

√
n

{
φ(ϑ̂n)− φ(ϑ0)

}
d→ N

(
0, s2

)
and √

n
{

φ(ϑ̂
∗
n)− φ(ϑ0)

}
d→ N

(
0, s2

)
,

where
s2 = (Eη4

0 − 1)
∂φ

∂ϑ′
Σ

∂φ

∂ϑ
.
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Numerical evaluation of Σ and Σ∗

The asymptotic variance of the VTE

Σ =

(
b −bK ′J−1

−bJ−1K J−1 + bJ−1KK ′J−1

)
and that of the QMLE, Σ∗, are not numerically computable,
even for the simplest model (the ARCH(1)).
; Approximations of Σ and Σ∗ from N = 1, 000 replications

of simulations of size n = 10, 000.
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Asymptotic variances of the QMLE and VTE
for ϑ0 = (γ0, α0) in ARCH(1) models, γ0 = 1 and ηt ∼ N (0, 1)

α0 = 0.1 α0 = 0.55 α0 = 0.7

QMLE
(

2.52 0.51
0.51 1.69

) (
15.94 7.11
7.11 4.20

) (
45.27 14.32
14.32 5.02

)
VTE

(
2.52 0.51
0.51 1.69

) (
28.78 12.82
12.82 6.74

)
∞
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Asymptotic variances of the QMLE and VTE
for θ0 = (ω0, α0) in ARCH(1) models, ω0 = 1 and ηt ∼ N (0, 1)

α0 = 0.1 α0 = 0.55 α0 = 0.7

QMLE
(

3.5 −1.4
−1.4 1.7

) (
5.1 −2.2
−2.2 4.2

) (
5.6 −2.4
−2.4 5.1

)
VTE

(
3.5 −1.4
−1.4 1.7

) (
5.1 −2.1
−2.1 9.3

)
∞
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Sampling distribution of the two estimators
on N = 1, 000 independent ARCH(1) simulations

n = 500

parameter true value estimator bias RMSE
ω 1.0 QMLE 0.013 0.102

VTE 0.012 0.102
α 0.55 QMLE -0.012 0.092

VTE -0.026 0.088
ω 1.0 QMLE 0.012 0.114

VTE 0.036 0.111
α 0.9 QMLE -0.012 0.110

VTE -0.103 0.089
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Sampling distribution of the two estimators
on N = 1, 000 independent ARCH(1) simulations

n = 10, 000

parameter true value estimator bias RMSE
ω 1.0 QMLE 0.000 0.010

VTE 0.000 0.010
α 0.55 QMLE 0.000 0.009

VTE 0.000 0.013
ω 1.0 QMLE 0.000 0.012

VTE 0.010 0.015
α 0.9 QMLE 0.000 0.011

VTE -0.032 0.032
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Comparison on daily stock returns

Index estimator ω α β
CAC QMLE 0.033 (0.009) 0.090 (0.014) 0.893 (0.015)

VTE 0.033 (0.009) 0.090 (0.014) 0.893 (0.015)
DAX QMLE 0.037 (0.014) 0.093 (0.023) 0.888 (0.024)

VTE 0.036 (0.013) 0.095 (0.022) 0.888 (0.024)
FTSE QMLE 0.013 (0.004) 0.091 (0.014) 0.899 (0.014)

VTE 0.013 (0.004) 0.090 (0.013) 0.899 (0.014)
Nasdaq QMLE 0.025 (0.006) 0.072 (0.009) 0.922 (0.009)

VTE 0.025 (0.006) 0.072 (0.009) 0.922 (0.009)
Nikkei QMLE 0.053 (0.012) 0.100 (0.013) 0.880 (0.014)

VTE 0.054 (0.012) 0.098 (0.013) 0.880 (0.015)
SP500 QMLE 0.014 (0.004) 0.084 (0.012) 0.905 (0.012)

VTE 0.014 (0.003) 0.084 (0.011) 0.905 (0.012)

Francq, Horvath, Zakoïan Variance targeting estimator of GARCH models



Volatility Models and QMLE
Variance Targeting Estimator

Conclusion

Description of the method
Asymptotic Properties of the VTE
Numerical comparison of the VTE and QMLE

Computation time comparison for estimating
GARCH(1,1) models on a set of 11 stock indices

Table: Design 1 and Design 2 correspond to different initial values.

Design 1 Design 2
VTE 39.0 55.5
QMLE 61.6 88.1
VTE+QMLE 85.1 98.9
In Design 2, for two series, the QMLE
leads to a nonoptimal local maximum
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Long-term predictions with misspecified models

Two GARCH(1,1) models are estimated by VTE and by QMLE
and are used to compute prediction intervals for εn+h:[√

σ̂2
n+h|nF̂−1

η (α/2),
√

σ̂2
n+h|nF̂−1

η (1− α/2)
]
,

when
εt = ω(∆t)ηt , ηt iid N (0, 1),

(∆t) is a Markov chain, independent of (ηt), with state-space
{1, 2} and transition probabilities
P(∆t = 1|∆t−1 = 1) = P(∆t = 2|∆t−1 = 2) = 0.9.
; Contrary to the QMLE, TVE should guarantee correct

predictions over long horizons.
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TVE guarantees correct long-term predictions
Prediction intervals of the Markov-switching model with different methods
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Value-at-Risk(VaR)

Let Vt be the value of a portfolio at time t . The (conditional)
VaR is the (1− α)-quantile of the conditional distribution of
Lt ,t+h = −(Vt+h − Vt):

VaRt ,h(α) = inf
{

x ∈ R | P
(
Lt ,t+h ≤ x | Vu, u ≤ t

)
≥ 1− α

}
.

Introducing the log-returns εt = log(Vt/Vt−1),

VaRt ,h(α) =
[
1− exp

{
qt ,h(α)

}]
Vt ,

where qt ,h(α) is the α-quantile of the conditional distribution of
the future returns εt+1 + · · ·+ εt+h.
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Estimating long horizon VaR

Lemma
Assume that (εt) is a strictly stationary process such that
Eεt = 0,

∑∞
h=1 {αε(h)}ν/(2+ν) < ∞ and E |εt |2+ν < ∞ for some

ν > 0. Let Var(εt) = ω2. We have

lim
h→∞

√
h ω Φ−1(α)/qt ,h(α) = 1 a.s.

horizon 1:

VaRt ,1(α) =
[
1− exp

{
σt(θ0)F−1

η (1− α)
}]

Vt ,

long horizon:

V̂aRt ,h(α) =
[
1− exp

{√
h Φ−1(α) ω̂

}]
Vt .
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Estimating long horizon VaR

Lemma
Assume that (εt) is a strictly stationary process such that
Eεt = 0,
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h=1 {αε(h)}ν/(2+ν) < ∞ and E |εt |2+ν < ∞ for some

ν > 0. Let Var(εt) = ω2. We have

lim
h→∞

√
h ω Φ−1(α)/qt ,h(α) = 1 a.s.

horizon 1:

VaRt ,1(α) =
[
1− exp

{
σt(θ0)F−1

η (1− α)
}]

Vt ,

long horizon:

V̂aRt ,h(α) =
[
1− exp

{√
h Φ−1(α) ω̂

}]
Vt .
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Estimating long horizon VaR with misspecified models
Comparison between the true VaR (black line) computed from the DGP (an HMM
model) and the VaR’s computed from a GARCH(1,1) estimated by QMLE (red) and
VTE (green)
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VTE can be recommended because it

reduces the computational complexity of GARCH
estimation;
is asymptotically less efficient that the QMLE, but can work
better in finite sample;
requires fourth-order moments for asymptotic normality,
but continues to work well with lower moments;
provides good (first step) estimations of real financial
series;
guarantees a consistent estimation of the long-run
variance;
thus guarantees correct long-horizon predictions and
VaR’s;
can be an indicator of misspecification if an important
discrepancy with the QMLE is observed.
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Directions for Future Work

Extension to other GARCH formulations;
Extension to multivariate models.
Other applications where the long-term variance is
essential (prediction of the realized volatility).
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