Estimating MGARCH models
equation-by-equation

Christian Francq Jean-Michel Zakoian
CREST and University Lille 3, France

IVC 2014, Vilnius, 3 July 2014

Francq, Zakoian Estimating MGARCH models equation-by-equation



Motivation and objectives

m The "dimensionality curse" is particularly problematic in
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Motivation and objectives

m The "dimensionality curse" is particularly problematic in
multivariate GARCH models:

» huge number of parameters;
» inversion of the conditional variance matrix for the QMLE.
m Proposing an Equation-by-Equation Estimator (EbEE) for
the volatility parameters of the individual components.
m Estimating the conditional correlations in a second step,
based on the residuals of the EbEE.

Used in several empirical studies (see e.g. Sucarrat,
Grgnneberg and Escribano, 2013) without asymptotic results.
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Equation-by-equation estimation of volatility parameters Parametrization of the individual volatilities
Estimating the augmented univariate GARCH
Comparing EbEE and Full QMLE

General framework

Let €, = (eqs---,€m) and gf_l =o{X,u<t.
Assume E(e, | #f ) =0and

H,=\Var(e; | #f ) exists and is positive-definite.
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General framework

Let €, = (eqs---,€m) and gffl =oi{X,u<t.
Assume E(e, | #f ) =0and

H,=\Var(e; | #f |) exists and is positive-definite.

Let ‘71-2; denote the diagonal elements of H, and let the equation
by equation (EbE) innovations

€ir
01t

1],*=Dt_1€;= , Dt=diag(01,,...,0'm,).

Emt
O mt

The conditional correlation matrix of €, is given by

R,=Varm; | Zf ) =D;'HD;".
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"Semi-strong" DCC representation

Introducing the vector 7, such that 5 =R!/?n,,

e = H/”n, EmI|ZFE)=0, Var(,|FE ) =1I,,

Hl‘ H(et—l,el—Zr---)thRl‘Dl‘r

where D, = {diag(H,)}'’? and R, = Corr(e; | FF ).
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"Semi-strong" DCC representation

Introducing the vector 7, such that 5 =R!/?n,,
e = H/”n, EmI|ZFE)=0, Var(,|FE ) =1I,,
Hf = H(et—l,el—Z:---) :D[R;Dt,

where D, = {diag(H,)}'’? and R, = Corr(e; | FF ).

Remark: (n,) is not an independent sequence in general (weak
representation, that does not give the whole dynamics, but is
quite general).
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Univariate "augmented" GARCH representations

Assuming that oy, has a parametric form, we then have

{ € = Okl
.pk
Okt ak(el—lrel—Z)-'-rao );

where 0 € R%, o} : R® x @ — (0,00), and

E(n;,|9f_l):0, Var(n;z|g[il):lu
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Univariate "augmented" GARCH representations

Assuming that oy, has a parametric form, we then have

{ € = Okl
.pk
Okt ak(el—lrel—Z)-'-rao );

where 0 € R%, o} : R® x @ — (0,00), and
E(n;,|9f_l):0, Var(n;z|g[il):lu

Remarks:

m (17;) is not independent in general, as is usually assumed
in GARCH modeling (not a DGP).

Francq, Zakoian Estimating MGARCH models equation-by-equation



Equation-by-equation estimation of volatility parameters Parametrization of the individual volatilities
Estimating the augmented univariate GARCH

Comparing EbEE and Full QMLE

Univariate "augmented" GARCH representations

Assuming that oy, has a parametric form, we then have

{ € = Okl
— .pk)
Okt = ak(el—lrel—Z)-'-rao );

where 0 € R%, o} : R® x @ — (0,00), and
E(n;,|9f_l):0, Var(n;z|g[il):lu

Remarks:
m (17;) is not independent in general, as is usually assumed
in GARCH modeling (not a DGP).
m a semi-strong "augmented" GARCH (past of all the returns
in the volatility)
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DGP satisfying the semi-strong DCC representation

m GARCH-type models

e,:Dthllzn,, (n,) iid (0,1,,).
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DGP satisfying the semi-strong DCC representation

m GARCH-type models

e,:Dthllzn,, (n,) iid (0,1,,).

» Generalized Constant Conditional Correlation (CCC)
models

R, =R is a constant correlation matrix,
» Dynamic Conditional Correlation (DCC)

R;=R(€;-1,€1-2,...) #R.
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DGP satisfying the semi-strong DCC representation

m Stochastic Correlation Models
_ *1/2 i
€; —Dth fl; (ft) iid (O;Im)
R;k ZR*(G,_1,€,_2,...,A,), Atqggf_l
» Individual volatilities are of GARCH-type but correlations
between components (in R;) are not

> If & is independent from #/ and Z¢ |,

thD[R[DZ, W|th R,=E(R;< |gt€—l)
» Three innovations sequences

n; =R;"%¢ =R,
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Equation-by-equation gaussian QMLE (EbEE)

Given observations €y,...,€,, and arbitrary initial values €; for
i<0,a proxy of O'kt(a(k)) = O'k(Et_l,6,_2,...,61,60,6_1,...;0(k)) is
defined by 65(0%) = o((€,-1,€1-2,...,€1,E0,E_1,...;0W).

Define the EbEE of 0))",...,80") by, for k=1,...,m

9,(11() =arg mm Q(k) CADY
o(k)
where
) (k) 1i ( (k)) €y
0.7 0e")=- loga (7] — .
n n= kt ]%t(a(k))
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Equation-by-equation gaussian QMLE (EbEE)

Given observations €y,...,€,, and arbitrary initial values €; for
i<0,a proxy of O'kt(a(k)) = O'k(Et_l,6,_2,...,61,60,6_1,...;0(k)) is
defined by 65(0%) = o((€,-1,€1-2,...,€1,E0,E_1,...;0W).

Define the EbEE of 0))",...,80") by, for k=1,...,m

A K)

0, =arg mm Q(k)(ﬂ(k)),

oWe

where

AK) k) _ 1 i ( (k)) €
0L @X) = =Y loga? (0 —_
n n= kt ~/%, (H(k))
Can we rely on the asymptotic theory of estimation for
univariate GARCH? not in general because (n;,) is not iid, and
the volatility depends on all past components.
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CAN of the EbEE for augmented univariate models

k
ek = 01057,

Assume
m (€) is a strictly stationary and ergodic process, with
Eleg|® < oo for some s> 0, and Elogait < 00;

m 0 belongs to the interior of @®);

m E|n7,| """ < oo, for some 6 >0,

and some additional , then
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CAN of the EbEE for augmented univariate models

k
€kr=0kr(0( ))n,\,

Assume
m (€) is a strictly stationary and ergodic process, with
Eleg|® < oo for some s> 0, and Elogait < 00;

m 0 belongs to the interior of @®);

m E|n7,| """ < oo, for some 6 >0,

and some additional , then

a.s. asn— oo and

Vit (8, -8%) Z N (0,0, 1ud '}, where T = E (in - Vdid},),

2 gk
_ ! _ 1 90,64)
J =E(dpd,),), dis = o 90®
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Asymptotic results for "quasi-strong" models

When
1y is independent from £,

several assumptions can be weakened, for instance

|4(1+6)

E|n}, < oo can be replaced by E|77Zt|4 <o,

and the asymptotic variance is simpler
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Asymptotic results for "quasi-strong" models

When
1y is independent from £,

several assumptions can be weakened, for instance

|4(1+6)

E|n}, < oo can be replaced by E|n,’;|4 <o,

and the asymptotic variance is simpler

Asymptotic distribution in the "quasi-strong"” case

v (0, -0%) Z A {o, Enjt - gt}
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Asymptotic results for "quasi-strong" models

When
1y is independent from £,

several assumptions can be weakened, for instance

|4(1+6)

E|n}, < oo can be replaced by E|77Zt|4 <o,

and the asymptotic variance is simpler

Asymptotic distribution in the "quasi-strong"” case

v (0, -0%) Z A {o, Enjt - gt}

The independence assumption is satisfied for
m all the generalized CCC-GARCH models
m some DCC-GARCH and SC models.
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Is the full QMLE always more efficient ?

Estimating the volatility coefficients EbE does not always entail
efficiency loss with respect to the full QML.
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Comparing EbEE and Full QMLE

Is the full QMLE always more efficient ?

Estimating the volatility coefficients EbE does not always entail
efficiency loss with respect to the full QML.

Example: bivariate CCC model in which the only unknown
coefficients are the parameters of the first volatility:

a2,0) oo, )02

172
€;=H, Th, Hl‘: h
Poffu(ﬂf) Jo2; 0%,
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Is the full QMLE always more efficient ?

Estimating the volatility coefficients EbE does not always entail
efficiency loss with respect to the full QML.

Example: bivariate CCC model in which the only unknown
coefficients are the parameters of the first volatility:

1 1
o a2, 05)  poo1 0 )0
€;=H, Th, Hl‘: h
Poffu(ﬂf) )O 2 0%,

The FQMLE of 8{" is obtained by minimizing X, 7,(0'") where

2 2
€ € €1+€
1 2 11€2
LW = log(l—p%)ﬂoga%ﬁlogo%ﬁ—2 —2’ + —Zt -2po 2’ Zt ,
I=pg\oy, o3 010
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Is the full QMLE always more efficient ?

The full QMLE is asymptotically strictly more efficient than the
EbEE iff

Var{(nTz—POUZ)’?L} < E"T?_l
2
(2-3) 4

where po = p(n7,n5,)-

)
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Is the full QMLE always more efficient ?

The full QMLE is asymptotically strictly more efficient than the
EbEE iff
Var{(nj, —pon3)nit _ Enj/~1
(2-0})’ +
where po = p(n7,n5,)-
m When py =0, the left and right hand sides are equal.

m In the Gaussian case, the inequality holds true.
m For non Gaussian laws, the reverse inequality may hold.
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9 Estimating the conditional correlation and testing
@ Generalized CCC model
@ SC driven by an hidden Markov chain
@ Testing the adequacy of particular models
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GCCC model

{ € = Htllznt’
H, = DRD, D, =diag(o1s,...,0m),

where R is a correlation matrix, (»,) is an iid (0,1,,) process with
7, independent of F¢ |

Francq, Zakoian Estimating MGARCH models equation-by-equation



Generalized CCC model
Estimating the conditional correlation and testing SC driven by an hidden Markov chain
Testing the adequacy of particular models

GCCC model

{ € = Htllznt’
H, = DRD, D, =diag(o1s,...,0m),

where R is a correlation matrix, (»,) is an iid (0,1,,) process with
7, independent of F¢ |
Let

p=Ra1,....Ru1,R32, ..., Ru2, ., Ryyyu—1)’ = vech’ (),

and the global parameter

m
9=0",...,0" p"Y:= @ p") R x [-1,1I"™ V2 4= 4.
k=1
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The two-step estimation procedure

@ EDEE of the 8)°’s and extraction of the residuals 7} ;
@ Computation of the empirical correlation matrix

1& Ak Ak A A % A
Rﬁ;Zm (m)’, n; =(171,,---»17mt)'-
Let

b,=(0,:=0,,....0,"),8,) . b, =vech’®,).
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CAN of the two-step estimator

a A ~ (1) A (m)’ / N
Let 9, = (():1 =@",... 8" ),p;) . p,=vech’®,).

n

CAN for Extended CCC models
Under some regularity conditions, as n — oo, 9, — 9y a.s. and

Vi (0,-80) ) d 2o Zop
A = :/V O,Z = / .
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CAN of the two-step estimator

A A A ! m , A
Let 9, =(0,:=®,”,....8, 'y b P, pn=vech'®,).

n

CAN for Extended CCC models
Under some regularity conditions, as n — oo, 9, — 9y a.s. and

Vi (0,-80) ) d 2o Zop
A = :/V O,Z = / .

m X can be easily estimated by empirical means.
m 3 is bloc-diagonal if COV(Ukt ,Wz) =0 forany k#¢.
m In general Z, depends on 6, but when R=1,,

e 0

> =
0 Im(m—l)/Z

), g = diag((],~ DI, (= DT ).
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Time complexity comparison

CCC-GARCH(1, 1):
h;=w+Ag,_, +Bh;_,

where h, = (02,+-,02,), €,= (€2, €2,)’, B diagonal.

Conditional variance of the k-th component:

2
O = wk"'zakj € 1+:Bk0kt 1

j=1

Table: Number and dimension of the optimizations

Method nb dimension
EbEE m m+2
Full QMLE 1 m?+2m+mm—1)/2
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Empirical comparison of the computation time

For time series of exchange rates of length n =2081, using a
single processor:

Table: CPU time in seconds

dimension m
2 3 4 5 6
Estimator
EbEE 1559 28,50 43.91 70.90 98.39
FQMLE 101.41 443.34 870.04 1182.22 1515.58
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Estimating the conditional correlation and testing SC driven by an hidden Markov chain

Testing the adequacy of particular models
A SC model

Assume €; =D.R’'/%¢,,

R =R*(Ay) where (Ay) is a Markov chainon & ={1,...,N},

independent of (¢;). The Markov chain is not observed.
Denoting by p(i,j) = P(A; =j| A,—1 =) the transition probabilities,
the parameter is

¢ = ©V,....0" p'(1),....p'N),p"
(0/,p/,p/)/ € Rd x [_1, 1]Nm(m—1)/2 % [0’ I]N(N_l),

where p = (p(1,2),p(1,3),...,p(1,N),p2,2),...,p(N,N)) and
p(i) =vech®{R()} fori=1,...,N.
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Estimation of the SC model (without GARCH)

The HMM (Hidden Markov Model)
n =R (008,

of unknown parameter 9, = (p;,,p;)’ can be estimated by ML
when n7,...,1, are observed.
Assuming

m the sequences (A;) and (¢,) are mutually independent,
m the Markov chain (A) is stationary, irreducible and
aperiodic,
| ~AN01,),
and an identifiability assumption, the MLE of 9 is strongly
consistent.
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Adapting Hamilton’s EM algorithm

Because the unknown parameters are correlations instead of
covariances, the M step contains the non explicit maximization:

R* (i) = arg minlog|R| + Tr {R_IZ(i)}
ReZ

where #Z denotes the space of the m x m symmetric positive
definite matrices and

z()_ * EVA " -.
l mln()t;m (1) 7410 (0)
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Estimating the conditional correlation and testing SC driven by an hidden Markov chain
Testing the adequacy of particular models

Estimation of the SC-GARCH model

In practice, the innovations n;’s are not available. However
m The EbEE of 6, is consistent: 8,, — 6, a.s.

m The EM algorithm can then be applied to the EbEE
residuals )
;=D @ne, 1=1,..n.
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Estimating the conditional correlation and testing SC driven by an hidden Markov chain
Testing the adequacy of particular models

Example of a bivariate BEKK-GARCH(1,1)

Consider for instance the simple model
e = H/""y, H/,=Q+Ae e A'+BH,,

where (n,) iid (0,1), @ and A = (a;j), B =diag(b,b,) are square
2 x2 matrices, Q is positive definite, by,b, = 0.
The diagonal terms of H, are given by

2 2 2 2
hiy = wi+aye), | +2a11a12€1,-1€2,-1 +a1,€5 | +bihi-,
h = wyn+die? . +2aiane € +d2.e2  +boh
22t 22 215111 21422€71 —1€2 -1 226211 20122 t—1-
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Estimating the conditional correlation and testing SC driven by an hidden Markov chain
Testing the adequacy of particular models

Constraints on the augmented GARCH models

Letting 0(") (Wik, k1,2ak1ak2, 2) for k= 1,2, the validity of this
model can be studied by estimating, for k=1,2,

2 _ g, gk 2 ) 2 *
Oy = 0y +05€1 1+t903€1; 1€2,-1 +64)€3,_; +64g Ukt v

under the positivity constraints 0 ") >0, 0 =0,i=2,5.
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Constraints on the augmented GARCH models

Letting 8% = (wiw, a2, 2ax1 a2, a2,)’ for k= 1,2, the validity of this
model can be studied by estimating, for k=1,2,

2 _ 9 (k) 9 (k) .2

(k) .2 (k)
Oy = 7]

2 €1— 1+903€1f 1€2,1— 1+904€2z 119 Ukt it

under the positivity constraints 0 ") >0, 0 0,i=2,5.
The restrictions implied by the BEEK-GARCH(1,1) are:

. k) _ (] —
HO(k): ol =21/6%0%, k=1,2.

Note that, under HO(k), the true parameter value is at the
boundary of the parameter set.
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Testing the BEKK formulation

Let the Wald statistic for the hypothesis HO(k),

2
AK) _ [0 5®
X n{0n3 2 0n20n4} A~ (k) X
W = —— . where 6, =@©%,..
pP e
X i Lo e X

( \/Q(k)/g(k) 1\/Qk)/gk) ) ﬁzt:ekt/(rkt(éf,k)) and

6%y,

k
1 062,

=2 (0 (k)
kf (Gn) 00

o 15, . . 12 o
Jik = - detd;(p Iy = - Z{ﬂk, l}dktdktr di; =
t=1 t=1
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Estimating the conditional correlation and testing SC driven by an hidden Markov chain
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Asymptotic distribution under the null

Suppose p(A +B) <1 and let ajjajz >0, azjax >0. Suppose 1,
admits a positive density around 0, and suppose that
Elnu|**? < 0o, for k= 1,2 and some & > 0. Then,

)dlz

wk (1) + = 50

Testing HO(k) at the asymptotic level a € (0,1/2) can thus be
achieved by using the critical region {(W® > x2 , (1)}
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

B diagonal

CCC-GARCH(1,1) h,=w+Ae, | +Bh

EbEE

t—1°

0.029 0.002 0.015 0.012 0.003 0.000

0010 0003 0040 0013 0003 0038 CAD
0.000 0.136 0.000 0.003 0.000 0.000

0002 0023 0004 0003 0.001 0.003 CHF
0.000 0.002 0.031 0.008 0.002 0.001

Ao| oos oo 0028 0007 0002 0027 CNY

~ | 0.006 0.001 0.004 0.041 0.006 0.000 [’

0004 0002 0020 0012 0002 0019 GBP
0.017 0.003 0.000 0.002 0.061 0.000

0012 0005 0054 0016 0012 0052 JPY
0.000 0.003 0.024 0.007 0.002 0.008

0005 0002 0028 0007 0002 0028 uSD

Outside the diagonal, the coefficients are not significant.
(diagf;)’: 092 0.88 0.95 093 0.93 096 |

0.022 0.017 0.010 0.015 0.014 0.009
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Correlation matrix of the CCC-GARCH(1,1) model

Second step estimator

1.00 0.00 046 0.39 0.17 047 \ CAD

0.026 0.039 0.031 0.034 0.032

0.00 1.00 0.14 0.12 042 0.13 | CHF

0.040 0.027 0.043 0.045

0.46 0.14 1.00 0.44 0.58 098 | CNY

0.033 0.039 0.031

039 0.12 044 1.00 026 045 | GBP

0.071 0.040

0.17 042 0.58 026 1.00 0.57 | JPY

0.044

047 0.13 098 0.45 057 1.00/ USD
Instantaneous positive correlations.

=
Il
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

MS correlation matrix with 2 regimes

Second step estimator of the fist regime

The EbEE of the first step remains the same.

1.00 0.38 0.71 0.69 0.58 0.72 \ CAD

0.150 0.062 0.141 0.127 0.061

038 1.00 0.59 052 0.66 0.59 | CHF

0.138 0.107 0.066 0.140

0.71 0.59 1.00 0.81 0.89 0.99 | CNY

R() = 0.132 0096  0.002

0.69 0.52 0.81 1.00 0.76 0.82 | GBP

0.146 0.135

0.58 0.66 0.89 0.76 1.00 0.90 | JPY

0.101

0.72 0.59 0.99 0.82 0.90 1.00 / USD
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

MS correlation matrix with 2 regimes

Second step estimator of the second regime

Two different regimes for the correlations.

1.00 -0.04 042 034 0.10 043 \ CAD

0.039 0.029 0.030 0.042 0.028

-0.04 1.00 0.08 0.08 0.39 0.07 | CHF

0.044 0.039 0.028 0.044

042 0.08 1.00 0.38 052 098 | CNY

iI(Z) = 0039 0033  0.001
0.34 0.08 038 1.00 0.18 0.38 | GBP

0051  0.039
0.10 039 052 0.18 1.00 0.51 JPY

0.034

043 007 098 038 0.51 1.00/ USD
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

MS correlation matrix with 2 regimes

Estimated transition probabilities

0.826 0.174
~ 0.036 0.036
P=1 0039 0961

0.013 0.013

This corresponds to regimes with relative frequencies
P(A,=1)=0.18 and P(A, =2) =0.82.
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

GBP and JPY residuals as function of the most
probable regime

Regime 1 Regime 2
N
[aV]
& &
il © il
T
c\ll L]
T
2 1 0 1 2 6
GBP GBP
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

For each pair of exchange rates:
p-values of the tests of the null hypotheses #{ and H{") implied by the bivariate
BEKK-GARCH(1,1) model.

CAD CHF CNY GBP JPY
H(()l ) H(()Z) H(()l ) H? H(() 1) H(()Z) H(()] ) H(()Z) H(()l) H(()2)
CHF 0.000 0.163
CNY 0.120 0.015 0.122 0.500
GBP 0.012 0.023 0.128 0.000 0.005 0.100
JPY 0.007 0.006 0.500 0.500 0.500 0.087 0.050 0.000
USD 0.500 0.021 0.114 0.000 0.500 0.381 0.068 0.000 0.102 0.000
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

25 world stock market indices

m Major world stock market indices by Yahoo: 5 for Amerlcas
11 for Asia-Pacific, 8 for Europe and ;

m from n=2157 for the series "NZ50" to n = 6040 for
"AEX.AS" (1990 to mid 2013);

m CCC model with individual PGARCH(1,1) volatilities

{ € =01
ol =w+ “+(€z+—1)5 + cx_(—et‘_l)‘s +,Baf_1

with 6 € {0.5,1,1.5,2}.
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PGARCH(1,1) models of the major World stock indices

lllustrations

Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests

PGARCH-CCC model on 25 indices

MERV
BVSP
GSPT
MXX
GSPC
AORD
SSEC
HSI
BSES
JKSE
KLSE
N225
NZ50
STI
KS11
TWII
ATX

0.151 (o 002)
0.077 (0.001)
0.012 (0.009)
0.032 (0.003)
0.016 (0.006)
0.023 (0.007)
0.031 (0.010)
0.029 (0.008)
0.055 (0.004)
0.063 (0.005)
0.087 (0.022)
0.044 (0.004)
0.018 (0.019)

0.027 (0.011)
0.017 (0.009)
0.028 (0.012)
0.030 (0.005)

ay

0.063 (0.002)
0.068 (0.001)
0.046 (0.002)
0.044 (0.001)
0.000 (0.002)
0.030 (0.002)
0.082 (0.004)
0.049 (0.003)
0.062 (0.003)
0.096 (0.002)
0.071 (0.002)
0.038 (0.003)
0.044 (0.006)

0.078 (0.001)
0.049 (0.001)
0.041 (0.004)
0.050 (0.002)

Francq, Zakoian

a—
0.151 (0.001)
0.138 (0.002)
0.109 (0.004)
0.167 (0.002)
0.134 (0.003)
0.131 (0.003)
0.123 (0.003)
0.120 (0.003)
0.179 (0.002)
0.190 (0.001)
0.157 (0.001)
0.148 (0.002)
0.120 (0.004)
0.178 (0.001)
0.121 (0.004)
0.123 (0.003)
0.137 (0.003)

Estimating MGARCH models equation-by-equation

B
0.858 (0.004)
0.884 (0.002)
0.926 (0.007)
0.896 (0.004)
0.927 (0.004)
0.910 (0.0086)
0.904 (0.012)
0.916 (0.009)
0.872 (0.005)
0.856 (0.005)
0.835 (0.014)
0.898 (0.006)
0.898 (0.010)

0.876 (0.005)
0.923 (0.008)
0.918 (0.010)
0.902 (0.007)

— A
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o o NNy
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Correlation matrix estimate R (pairwise method)

MER BVS GST MXX GSC AOR SSE HSI BSE JKS KLS N22 Nz5

MERV 1.00

BVSP 0.53 1.00

GSPT 0.47 0.48 1.00

MXX  0.47 052 0.48 1.00

GSPC 048 052 0.67 0.55 1.00

AORD 0.17 0.17 0.21 0.177 0.12 1.00

SSEC 0.06 0.08 0.08 0.06 0.02 0.18 1.00

HSI 021 0.19 0.22 021 0.14 049 0.28 1.00

BSES 0.17 0.19 021 0.20 0.15 0.31 0.14 0.40 1.00

JKSE 0.15 0.15 0.14 0.15 0.08 0.36 0.15 0.43 0.31 1.00

KLSE 0.10 0.10 0.11 0.12 0.06 0.28 0.14 0.36 0.19 0.32 1.00

N225 0.11 0.13 0.19 0.12 0.12 046 0.16 044 0.27 0.34 0.28 1.00
Nz50 0.09 0.06 0.10 0.09 0.04 048 0.16 0.31 021 0.29 0.22 0.38 1.00
STI 022 020 0.22 020 0.16 044 0.18 056 0.38 044 039 040 0.32
KS11 0.15 0.20 0.20 0.20 0.15 049 0.16 0.55 0.33 0.36 0.27 0.54 0.32
Twil 0.13 0.14 0.15 0.13 0.10 041 0.18 0.47 0.27 0.33 0.27 044 0.31
ATX 0.31 027 0.33 030 0.30 032 0.12 0.33 0.27 028 0.19 0.27 0.22
BFX 0.35 0.33 040 036 042 030 0.09 031 027 0.24 0.17 0.25 0.20
FCHI 037 0.36 044 039 047 026 0.06 0.31 028 021 0.15 0.26 0.17
GDAX 0.36 0.37 0.44 0.38 0.47 030 0.07 034 028 021 0.16 0.27 0.16
AEX 0.37 036 045 039 045 031 0.06 035 029 0.22 0.18 0.28 0.18
SSMI 0.33 0.31 039 0.35 041 029 005 0.31 027 023 0.16 0.27 0.19
FTSE 0.38 0.37 046 0.39 047 028 0.06 032 029 022 0.17 0.27 0.18

ncq, Zakoian Estimating MGARCH models equation-by-equation



Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Correlation matrix estimate R

STI KS1 TWI ATX BFX FCH GDA AEX SSM FTS GD

STI 1.00

KS11  0.50 1.00

TWII  0.45 0.51 1.00

ATX 0.32 0.28 0.23 1.00

BFX 0.30 025 0.19 0.56 1.00

FCHI 030 0.26 0.20 0.55 0.71 1.00

GDAX 0.31 027 0.20 059 0.70 0.79 1.00

AEX 033 0.28 0.22 058 0.74 0.82 0.79 1.00

SSMI  0.30 0.26 0.21 052 0.66 0.72 0.72 0.74 1.00

FTSE 031 027 0.19 054 066 0.77 0.70 0.76 0.69 1.00

GD 0.25 0.27 021 032 034 0.34 033 033 032 0.30 1.00
0.36 028 025 0.38 0.39 042 040 041 040 040 0.33 1.00
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

PCA loading matrix: correlations between the
variables and the first 3 factors

PC1 PC2 PC3 PC1 PC2 PC3
MERV -0.52 -0.29 -0.46 STI -0.58 0.45 -0.09
BVSP -0.52 -0.29 -0.52 KS11  -0.55 0.50 -0.11
GSPT -0.59 -0.32 -0.41 TWII -0.46 0.50 -0.11
MXX  -0.54 -0.30 -0.46 ATX -0.68 -0.08 0.22
GSPC -0.56 -0.45 -0.41 BFX -0.75 -0.25 0.27
AORD -0.55 0.46 -0.02 FCH -0.79 -0.32 0.28
SSEC -0.19 0.27 -0.14 GDA -0.79 -0.29 0.27
HSI -0.60 0.48 -0.07 AEX -0.81  -0.28 0.29
BSES -0.48 0.25 -0.04 SSM -0.75 -0.24 0.30
JKSE -0.45 042 -0.06 FTS -0.78 -0.28 0.21
KLSE -0.35 0.38 -0.07 GD. -0.46 0.05 0.14
N225 -0.50 0.47 -0.00 -0.57 0.06 0.10
NZ50 -0.37 0.44 0.03 34.6% 12.2% 6.5%
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Factorial plan PC2-PC3

05

FEBRY!
FTS ATX

PC3 (6.5%)
0
®
mx
2

GSPGSPT
MER
BVS

-0.5
L

1.0

-1.0 -0.5 0.0 0.5 1.0

PC2 (12.2%)




Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Conclusion

EbEE + correlation of the EbE residuals
m much simpler than the FQMLE;
m not necessarily less efficient;
m first EDEE step valid for different correlation structures;
m specification tests;
m asynchronous individual series.
Preprint: http://mpra.ub.uni-muenchen.de/54250/
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Conclusion

EbEE + correlation of the EbE residuals
m much simpler than the FQMLE;
m not necessarily less efficient;
m first EDEE step valid for different correlation structures;
m specification tests;
m asynchronous individual series.
Preprint: http://mpra.ub.uni-muenchen.de/54250/
Thanks for your attention @ '
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

DCC-GARCH: A condition to obtain a quasi-strong
model

e.=Dm;, u; =Ry, @)idOI,), RecZF,
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

DCC-GARCH: A condition to obtain a quasi-strong
model

e.=Dm;, u; =Ry, @)idOI,), RecZF,

Assume that (n,) has a spherical distribution. Then
n;, is independent from ¢ . Moreover, (n;,) is iid (0,1). }
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

DCC-GARCH: A condition to obtain a quasi-strong
model

e.=Dm;, u; =Ry, @)idOI,), RecZF,

Assume that (n,) has a spherical distribution. Then
n;, is independent from ¢ . Moreover, (n;,) is iid (0,1). }

Proof. Denoting by e; the k-th column of I,,,, we have
% d
n; = e R*n, S lle,R}*In1 =1,

conditionally to &#¢

£ |» and thus unconditionally.
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

DCC-GARCH: A condition to obtain a quasi-strong
model

e.=Dm;, u; =Ry, @)idOI,), RecZF,

Assume that (n,) has a spherical distribution. Then
n;, is independent from ¢ . Moreover, (n;,) is iid (0,1). }

Proof. Denoting by e; the k-th column of I,,,, we have
% d
n; = e R*n, S lle,R}*In1 =1,

conditionally to ¢ ,, and thus unconditionally.

Remark: the process (5;) is not independent in general:

* * d
Mg+ Aamy, € e+ A2e )Ry 2 1 = AT +A5+21 MaRi (K, 0} 1,
conditionally on ¢ ,.
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

SC-GARCH: A condition to obtain a quasi-strong
model

e,=Dm, n;=R'?&, (&)iid O, R =R*(A), A¢FE,.
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

SC-GARCH: A condition to obtain a quasi-strong
model

e,=Dm, n;=R'?&, (&)iid O, R =R*(A), A¢FE,.

Assume that (&;) has a spherical distribution and is independent
from (A,). Then n;, is independent from 9['11. Moreover, (n;,) is
iid (0,1).
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

SC-GARCH: A condition to obtain a quasi-strong
model

e,=Dm, n;=R'?&, (&)iid O, R =R*(A), A¢FE,.

Assume that (&;) has a spherical distribution and is independent
from (A,). Then n;, is independent from 9['11. Moreover, (n;,) is
iid (0,1).

m If in addition #¢ , = then the augmented univariate
GARCH representations are quasi-strong (the asymptotic
variance is then simpler).

m The multivariate model is not strong in general, since the
7n;’s are not independent, and not id (when (R)) is not
stationary).
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Information sets: condition for #¢, =%,

€, =D;n; entails 3@'[*1 cFf . For some models (but not all),

e _ g
gt—l_gt—l'
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Information sets: condition for #¢, =%,

€, =D;n; entails .?t'fl cFf . For some models (but not all),

FE, =F"

t—

Example: Multivariate ARCH(1) model with
ol —w,+ZaU 1
Jj=1
Letting h, = (03,,...,02%,) and w = (wy,...,w,)', we have
h=w+AMm_Dh,_,
where A(m;_ ) = (a;n;; )iy- It follows that

S5 *
h,= 1m+kZlA('l7_1)---A(TIf_k) we F'.
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

A condition to obtain a quasi-strong model

Assume n; = R; 2, where (£,) iid with a spherical distribution
and R; =R*(A,) with

(Ay) and (&;) are independent.

Francq, Zakoian Estimating MGARCH models equation-by-equation



Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
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A condition to obtain a quasi-strong model

Assume n; = R; 2, where (£,) iid with a spherical distribution
and R; =R*(A,) with

(Ay) and (&;) are independent.

Then n;, is independent from El’fl. Moreover, (n;,) is an iid (0,1)
sequence.
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BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

A condition to obtain a quasi-strong model

Assume n; = R; 2, where (£,) iid with a spherical distribution
and R; =R*(A,) with

(Ay) and (&;) are independent.

Then n;, is independent from El’fl. Moreover, (n;,) is an iid (0,1)
sequence.

If in addition ¢ | = 91’1*1 then the augmented univariate
GARCH representations are quasi-strong (the asymptotic
variance is then simpler). The model is not strong in general,
since the 7;’s are not independent, and not id (when (R;) is not
stationary).
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Condition for #¢ | = F" |

We always have gt'fl cZ£ |, and for some models (but not all)

€ _ g
9—1 _gt—l'

t
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Condition for #¢ , =",

We always have gt'fl cZ£ |, and for some models (but not all)

*

Example: Multivariate ARCH(1) model with
m
orl=wi+)y a,jeft_l.
=1
Letting h, = (03,,...,02%,) and w = (wy,...,w,)', we have

h=w+Am;_Dh,_,

where A(m;_ ) = (a;n;; )iy- It follows that

[e.] *
h, =Ly +I;A(nj_1)...A(n;‘_k) weF! .
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Proof that 7, is independent of n* , = R"'|%¢,_,

Using the independence between &, and &,_; and between (R;)
and (&),

P <xmy,_ <VIR R = P, <xIR)PMny,,_  <yIR ).
Because (conditional to R;), &, is spherically distributed,
* * d *
= e RPE S el R 1E = ¢
and thus

*

P, < x,nzt_l <yIR;,R; ) =P, < )c)P(nzt_1 <y).
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Technical assumptions for the consistency of the EbEE

m for any real sequence (¢;);>], the function 8% — gy (e, ey,...;0W) is
continuous and there exists K : R* — (0,00) such that

lok(er,er,...;:0%) —opler,er,..;00) < K(ey,..) 18% -0,

2
E K(e,_l,et(;)z,...) < oo,
Ukt(go )

m there exists a neighborhood 7/(0(()")) of 9(()") such that

2
( Okt (aék)) )
E  sup — | <00

a(k)ey(o(()k)) Ukt(o(k))
® oy (-)>w for some w>0.
m 0u00)=01,00) as. iff 90 =g,
B Let Ay =64,0%)-0,0%). Let C>0and 0< p < 1. We have

sup  |Agl < Cp', a.s.
oW ce®
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Extended CCC and DCC-GARCH(1,1) on 6 exchange rates
BEKK adequacy tests
lllustrations PGARCH-CCC model on 25 indices

Technical assumptions for the AN of the EbEE

m for any real sequence (¢;);», the function %) — g (e, es,...;8%) has
continuous second-order derivatives;

m there exists a neighborhood 7 @) of 8% such that

40+ 201+
- 1 oo, [*1*2) - 1 0%ay,0%) [
g(k)ey(egf)) Uk,(H(k)) 29® ' a(k)ey(g(()k)) ak,(B(k)) 20®) 5e®’
4
o0 N ,
su; —| have finite expectations.
o(k)ey(egm) 0, (0®)
" (k)
07, (0
sup % <Cp', a.s.
e | 00W
m Fork=1,...,mand for any x € R%,
2 k)
lagkt(a() ) _

=0,as. > x=0.

09w
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