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Motivation and objectives

The "dimensionality curse" is particularly problematic in
multivariate GARCH models:

Ï huge number of parameters;
Ï inversion of the conditional variance matrix for the QMLE.

Proposing an Equation-by-Equation Estimator (EbEE) for
the volatility parameters of the individual components.
Estimating the conditional correlations in a second step,
based on the residuals of the EbEE.

Used in several empirical studies (see e.g. Sucarrat,
Grønneberg and Escribano, 2013) without asymptotic results.
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General framework

Let εt = (ε1t, · · · ,εmt)′ and FX
t−1 =σ{Xu,u< t}.

Assume E(εt |F ε
t−1) = 0 and

Ht =Var(εt |F ε
t−1) exists and is positive-definite.

Let σ2
it denote the diagonal elements of Ht and let the equation

by equation (EbE) innovations

η∗t =D−1
t εt =


ε1t
σ1t
...
εmt
σmt

 , Dt = diag(σ1t, . . . ,σmt).

The conditional correlation matrix of εt is given by

Rt =Var(η∗t |F ε
t−1) =D−1

t HtD−1
t .
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"Semi-strong" DCC representation

Introducing the vector ηt such that η∗t =R1/2
t ηt,

εt = H1/2
t ηt, E(ηt |F ε

t−1) = 0, Var(ηt |F ε
t−1) = Im,

Ht = H(εt−1,εt−2, . . .) =DtRtDt,

where Dt = {diag(Ht)}1/2 and Rt =Corr(εt |F ε
t−1).

Remark: (ηt) is not an independent sequence in general (weak
representation, that does not give the whole dynamics, but is
quite general).
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Univariate "augmented" GARCH representations

Assuming that σkt has a parametric form, we then have{
εkt = σktη

∗
kt,

σkt = σk(εt−1,εt−2, . . . ;θ(k)
0 ),

where θ(k)
0 ∈Rdk , σk : R∞×Θk → (0,∞), and

E(η∗kt |F ε
t−1) = 0, Var(η∗kt |F ε

t−1) = 1.

Remarks:
(η∗kt) is not independent in general, as is usually assumed
in GARCH modeling (not a DGP).
a semi-strong "augmented" GARCH (past of all the returns
in the volatility)
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DGP satisfying the semi-strong DCC representation

GARCH-type models

εt =DtR1/2
t ηt, (ηt) iid (0,Im).

Ï Generalized Constant Conditional Correlation (CCC)
models

Rt =R is a constant correlation matrix,

Ï Dynamic Conditional Correlation (DCC)

Rt =R(εt−1,εt−2, . . .) 6=R.
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DGP satisfying the semi-strong DCC representation

Stochastic Correlation Models

εt =DtR∗1/2
t ξt, (ξt) iid (0,Im)

R∗
t =R∗(εt−1,εt−2, . . . ,∆t), ∆t ∉F ε

t−1

Ï Individual volatilities are of GARCH-type but correlations
between components (in R∗

t ) are not
Ï If ξt is independent from F∆

t and F ε
t−1,

Ht =DtRtDt, with Rt =E(R∗
t |F ε

t−1).

Ï Three innovations sequences

η∗t =R∗1/2
t ξt =R1/2

t ηt.
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Equation-by-equation gaussian QMLE (EbEE)

Given observations ε1, . . . ,εn, and arbitrary initial values ε̃i for
i≤ 0, a proxy of σkt(θ

(k)) =σk(εt−1,εt−2, . . . ,ε1,ε0,ε−1, . . . ;θ(k)) is
defined by σ̃kt(θ

(k)) =σk(εt−1,εt−2, . . . ,ε1, ε̃0, ε̃−1, . . .;θ(k)).

Define the EbEE of (θ(1)
0 , . . . ,θ(m)

0 ) by, for k = 1, . . . ,m,

θ̂
(k)
n = arg min

θ(k)∈Θ(k)
Q̃(k)

n (θ(k)),

where

Q̃(k)
n (θ(k)) = 1

n

n∑
t=1

log σ̃2
kt

(
θ(k)

)
+ ε2

kt

σ̃2
kt

(
θ(k)) .

Can we rely on the asymptotic theory of estimation for
univariate GARCH? not in general because (η∗kt) is not iid, and
the volatility depends on all past components.
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CAN of the EbEE for augmented univariate models
εkt =σkt(θ

(k)
0 )η∗kt

Assume
(εt) is a strictly stationary and ergodic process, with
E|εkt|s <∞ for some s> 0, and E logσ2

kt <∞;

θ(k)
0 belongs to the interior of Θ(k);

E
∣∣η∗kt

∣∣4(1+δ) <∞, for some δ> 0,
and some additional technical assumptions , then

CAN

θ̂
(k)
n → θ(k)

0 , a.s. as n→∞ and
p

n
(
θ̂

(k)
n −θ(k)

0

)
L→N

{
0,J−1

kk IkkJ−1
kk

}
, where Ikk =E

(
{η∗4

kt −1}dktd′
kt
)
,

Jkk =E
(
dktd′

kt
)
, dkt = 1

σ2
kt

∂σ2
kt(θ

(k)
0 )

∂θ(k) .
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Asymptotic results for "quasi-strong" models

When
η∗kt is independent from F ε

t−1,

several assumptions can be weakened, for instance

E
∣∣η∗kt

∣∣4(1+δ) <∞ can be replaced by E
∣∣η∗kt

∣∣4 <∞,

and the asymptotic variance is simpler

Asymptotic distribution in the "quasi-strong" case
p

n
(
θ̂

(k)
n −θ(k)

0

)
L→N

{
0, (Eη∗4

kt −1)J−1
kk

}
.

The independence assumption is satisfied for
all the generalized CCC-GARCH models
some DCC-GARCH and SC models. Condition for quasi-strong model
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Is the full QMLE always more efficient ?

Estimating the volatility coefficients EbE does not always entail
efficiency loss with respect to the full QML.

Example: bivariate CCC model in which the only unknown
coefficients are the parameters of the first volatility:

εt =H1/2
t ηt, Ht =

 σ2
1t(θ

(1)
0 ) ρ0σ1t(θ

(1)
0 )σ2t

ρ0σ1t(θ
(1)
0 )σ2t σ2

2t


The FQMLE of θ(1)

0 is obtained by minimizing
∑n

t=1 lt(θ(1)) where

lt(θ(1)) = log(1−ρ2
0)+logσ2

1t+logσ2
2t+

1
1−ρ2

0

(
ε2

1t

σ2
1t

+ ε2
2t

σ2
2t

−2ρ0
ε1tε2t

σ2
1tσ

2
2t

)
,

with σ1t =σ1t
(
θ(1)).
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Is the full QMLE always more efficient ?

The full QMLE is asymptotically strictly more efficient than the
EbEE iff

Var
{(
η∗1t −ρ0η

∗
2t

)
η∗1t

}
(
2−ρ2

0

)2 < Eη∗4
1t −1
4

,

where ρ0 = ρ(η∗1t,η
∗
2t).

When ρ0 = 0, the left and right hand sides are equal.
In the Gaussian case, the inequality holds true.
For non Gaussian laws, the reverse inequality may hold.
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1 Equation-by-equation estimation of volatility parameters

2 Estimating the conditional correlation and testing
Generalized CCC model
SC driven by an hidden Markov chain
Testing the adequacy of particular models

3 Illustrations
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GCCC model

{
εt = H1/2

t ηt,
Ht = DtRDt, Dt = diag(σ1t, . . . ,σmt),

where R is a correlation matrix, (ηt) is an iid (0,Im) process with
ηt independent of F ε

t−1.
Let

ρ = (R21, . . . ,Rm1,R32, . . . ,Rm2, . . . ,Rm,m−1)′ = vech0(R),

and the global parameter

ϑ= (θ(1)′ , . . . ,θ(m)′ ,ρ′)′ := (θ′,ρ′)′ ∈Rd × [−1,1]m(m−1)/2, d =
m∑

k=1
dk.
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The two-step estimation procedure

1 EbEE of the θ(k)
0 ’s and extraction of the residuals η̂∗kt;

2 Computation of the empirical correlation matrix

R̂n = 1
n

n∑
t=1
η̂∗t

(
η̂∗t

)′ , η̂∗t = (η̂∗1t, . . . , η̂∗mt)
′.

Let

ϑ̂n =
(
θ̂
′
n := (θ̂

(1)′
n , . . . , θ̂

(m)′
n ), ρ̂′

n

)′
, ρ̂n = vech0(R̂n).
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CAN of the two-step estimator

Let ϑ̂n =
(
θ̂
′
n := (θ̂

(1)′
n , . . . , θ̂

(m)′
n ), ρ̂′

n

)′
, ρ̂n = vech0(R̂n).

CAN for Extended CCC models

Under some regularity conditions, as n→∞, ϑ̂n →ϑ0 a.s. and( p
n
(
θ̂n −θ0

)
p

n(ρ̂n −ρ0)

)
d→ N

{
0,Σ :=

(
Σθ Σθρ
Σ′
θρ

Σρ

)}
.

Σ can be easily estimated by empirical means.
Σθ is bloc-diagonal if Cov(η∗2

kt ,η∗2
`t ) = 0 for any k 6= `.

In general Σρ depends on θ0, but when R= Im

Σ=
(
Σθ 0
0 Im(m−1)/2

)
, Σθ = diag((κ∗11−1)J−1

11 , . . . , (κ∗mm−1)J−1
mm).
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Time complexity comparison

CCC-GARCH(1,1):

ht =ω+Aεt−1 +Bht−1

where ht =
(
σ2

1t, · · · ,σ2
mt

)′, εt =
(
ε2

1t, · · · ,ε2
mt

)′, B diagonal.

Conditional variance of the k-th component:

σ2
kt =ωk +

m∑
j=1

αkjε
2
j,t−1 +βkσ

2
k,t−1.

Table: Number and dimension of the optimizations

Method nb dimension
EbEE m m+2
Full QMLE 1 m2 +2m+m(m−1)/2
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Empirical comparison of the computation time

For time series of exchange rates of length n= 2081, using a
single processor:

Table: CPU time in seconds

dimension m
2 3 4 5 6

Estimator
EbEE 15.59 28.50 43.91 70.90 98.39
FQMLE 101.41 443.34 870.04 1182.22 1515.58
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A SC model

Assume εt =DtR∗1/2
t ξt,

R∗
t =R∗(∆t) where (∆t) is a Markov chain on E = {1, . . . ,N},

independent of (ξt). The Markov chain is not observed.
Denoting by p(i, j) =P(∆t = j |∆t−1 = j) the transition probabilities,
the parameter is

ζ = (θ(1)′ , . . . ,θ(m)′ ,ρ′(1), . . . ,ρ′(N),p′)′

:= (θ′,ρ′,p′)′ ∈Rd × [−1,1]Nm(m−1)/2 × [0,1]N(N−1),

where p= (p(1,2),p(1,3), . . . ,p(1,N),p(2,2), . . . ,p(N,N))′ and
ρ(i) = vech0{R(i)} for i= 1, . . . ,N.
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Estimation of the SC model (without GARCH)

The HMM (Hidden Markov Model)

η∗t =R∗1/2
t (∆t)ξt,

of unknown parameter ϑ0 = (ρ′
0,p′

0)′ can be estimated by ML
when η∗1 , . . . ,η∗n are observed.
Assuming

the sequences (∆t) and (ξt) are mutually independent,
the Markov chain (∆t) is stationary, irreducible and
aperiodic,
ξt ∼N (0,Im),

and an identifiability assumption, the MLE of ϑ0 is strongly
consistent.
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Adapting Hamilton’s EM algorithm

Because the unknown parameters are correlations instead of
covariances, the M step contains the non explicit maximization:

R∗(i) = arg min
R∈R

log |R|+Tr
{
R−1Σ(i)

}
where R denotes the space of the m×m symmetric positive
definite matrices and

Σ(i) = 1∑n
t=1πt|n(i)

n∑
t=1
η∗t (η∗t )′πt|n(i).
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Estimation of the SC-GARCH model

In practice, the innovations η∗t ’s are not available. However
The EbEE of θ0 is consistent: θ̂n → θ0 a.s.
The EM algorithm can then be applied to the EbEE
residuals

η̂∗t = D̃−1
t (θ̂n)εt, t = 1, . . .n.
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Example of a bivariate BEKK-GARCH(1,1)

Consider for instance the simple model

εt = H1/2
t ηt, Ht =Ω+Aεt−1ε

′
t−1A′+BHt−1,

where (ηt) iid (0,I2), Ω and A= (aij), B= diag(b1,b2) are square
2×2 matrices, Ω is positive definite, b1,b2 ≥ 0.
The diagonal terms of Ht are given by

h11,t = ω11 +a2
11ε

2
1,t−1 +2a11a12ε1,t−1ε2,t−1 +a2

12ε
2
2,t−1 +b1h11,t−1,

h22,t = ω22 +a2
21ε

2
1,t−1 +2a21a22ε1,t−1ε2,t−1 +a2

22ε
2
2,t−1 +b2h22,t−1.
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Constraints on the augmented GARCH models

Letting θ(k)
0 = (ωkk,a2

k1,2ak1ak2,a2
k2)′ for k = 1,2, the validity of this

model can be studied by estimating, for k = 1,2,

σ2
kt = θ(k)

01 +θ(k)
02 ε

2
1,t−1 +θ(k)

03 ε1,t−1ε2,t−1 +θ(k)
04 ε

2
2,t−1 +θ(k)

05σ
2
k,t−1,

under the positivity constraints θ(k)
01 > 0, θ(k)

0i ≥ 0, i= 2,5.

The restrictions implied by the BEEK-GARCH(1,1) are:

H0(k): θ(k)
03 = 2

√
θ(k)

02 θ
(k)
04 , k = 1,2.

Note that, under H0(k), the true parameter value is at the
boundary of the parameter set.
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Testing the BEKK formulation

Let the Wald statistic for the hypothesis H0(k),

W(k)
n =

n
{
θ̂(k)

n3 −2
√
θ̂(k)

n2 θ̂
(k)
n4

}2

X′
nĴ−1

kk ÎkkĴ−1
kk Xn

, where θ̂
(k)
n = (θ̂(k)

n1 , . . . , θ̂(k)
n5 )′,

Xn =
(
0,

√
θ̂(k)

n4 /θ̂(k)
n2 ,−1,

√
θ̂(k)

n2 /θ̂(k)
n4 ,0

)′
, η̂∗kt = εkt/σ̃kt(θ̂

(k)
n ) and

Ĵkk =
1
n

n∑
t=1

d̂ktd̂
′
kt, Îkk =

1
n

n∑
t=1

{η̂∗4
kt −1}d̂ktd̂

′
kt, d̂kt =

1
σ̃2

kt(θ̂n)

∂σ̃2
kt(θ̂

(k)
n )

∂θ(k)
.
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Asymptotic distribution under the null

Suppose ρ(A+B) < 1 and let a11a12 > 0, a21a22 > 0. Suppose η1
admits a positive density around 0, and suppose that
E

∣∣ηkt
∣∣4(1+δ) <∞, for k = 1,2 and some δ> 0. Then,

W(k)
n

d→ 1
2
χ2(1)+ 1

2
δ0.

Testing H0(k) at the asymptotic level α ∈ (0,1/2) can thus be
achieved by using the critical region {W(k)

n >χ2
1−2α(1)}.
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CCC-GARCH(1,1) ht =ω+Aεt−1+Bht−1, B diagonal
EbEE

Â=



0.029 0.002 0.015 0.012 0.003 0.000
0.010 0.003 0.040 0.013 0.003 0.038

0.000 0.136 0.000 0.003 0.000 0.000
0.002 0.023 0.004 0.003 0.001 0.003

0.000 0.002 0.031 0.008 0.002 0.001
0.005 0.002 0.028 0.007 0.002 0.027

0.006 0.001 0.004 0.041 0.006 0.000
0.004 0.002 0.020 0.012 0.002 0.019

0.017 0.003 0.000 0.002 0.061 0.000
0.012 0.005 0.054 0.016 0.012 0.052

0.000 0.003 0.024 0.007 0.002 0.008
0.005 0.002 0.028 0.007 0.002 0.028


,

CAD

CHF

CNY

GBP

JPY

USD

Outside the diagonal, the coefficients are not significant.(
diagB̂

)′ = (
0.92 0.88 0.95 0.93 0.93 0.96
0.022 0.017 0.010 0.015 0.014 0.009

)
.
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Correlation matrix of the CCC-GARCH(1,1) model
Second step estimator

R̂=



1.00 0.00 0.46 0.39 0.17 0.47
0.026 0.039 0.031 0.034 0.032

0.00 1.00 0.14 0.12 0.42 0.13
0.040 0.027 0.043 0.045

0.46 0.14 1.00 0.44 0.58 0.98
0.033 0.039 0.031

0.39 0.12 0.44 1.00 0.26 0.45
0.071 0.040

0.17 0.42 0.58 0.26 1.00 0.57
0.044

0.47 0.13 0.98 0.45 0.57 1.00



CAD

CHF

CNY

GBP

JPY

USD
Instantaneous positive correlations.
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MS correlation matrix with 2 regimes
Second step estimator of the fist regime

The EbEE of the first step remains the same.

R̂(1) =



1.00 0.38 0.71 0.69 0.58 0.72
0.150 0.062 0.141 0.127 0.061

0.38 1.00 0.59 0.52 0.66 0.59
0.138 0.107 0.066 0.140

0.71 0.59 1.00 0.81 0.89 0.99
0.132 0.096 0.002

0.69 0.52 0.81 1.00 0.76 0.82
0.146 0.135

0.58 0.66 0.89 0.76 1.00 0.90
0.101

0.72 0.59 0.99 0.82 0.90 1.00



CAD

CHF

CNY

GBP

JPY

USD
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MS correlation matrix with 2 regimes
Second step estimator of the second regime

Two different regimes for the correlations.

R̂(2) =



1.00 −0.04 0.42 0.34 0.10 0.43
0.039 0.029 0.030 0.042 0.028

−0.04 1.00 0.08 0.08 0.39 0.07
0.044 0.039 0.028 0.044

0.42 0.08 1.00 0.38 0.52 0.98
0.039 0.033 0.001

0.34 0.08 0.38 1.00 0.18 0.38
0.051 0.039

0.10 0.39 0.52 0.18 1.00 0.51
0.034

0.43 0.07 0.98 0.38 0.51 1.00



CAD

CHF

CNY

GBP

JPY

USD
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MS correlation matrix with 2 regimes
Estimated transition probabilities

P̂=


0.826 0.174

0.036 0.036

0.039 0.961
0.013 0.013

 .

This corresponds to regimes with relative frequencies
P̂(∆t = 1) = 0.18 and P̂(∆t = 2) = 0.82.
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GBP and JPY residuals as function of the most
probable regime
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For each pair of exchange rates:
p-values of the tests of the null hypotheses H(1)

0 and H(2)
0 implied by the bivariate

BEKK-GARCH(1,1) model.

CAD CHF CNY GBP JPY
H(1)

0 H(2)
0 H(1)

0 H(2)
0 H(1)

0 H(2)
0 H(1)

0 H(2)
0 H(1)

0 H(2)
0

CHF 0.000 0.163
CNY 0.120 0.015 0.122 0.500
GBP 0.012 0.023 0.128 0.000 0.005 0.100
JPY 0.007 0.006 0.500 0.500 0.500 0.087 0.050 0.000
USD 0.500 0.021 0.114 0.000 0.500 0.381 0.068 0.000 0.102 0.000
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25 world stock market indices

Major world stock market indices by Yahoo: 5 for Americas,
11 for Asia-Pacific, 8 for Europe and 1 for Middle East;
from n= 2157 for the series "NZ50" to n= 6040 for
"AEX.AS" (1990 to mid 2013);
CCC model with individual PGARCH(1,1) volatilities{

εt =σtηt
σδt =ω+α+(ε+t−1)δ+α−(−ε−t−1)δ+βσδt−1

with δ ∈ {0.5,1,1.5,2}.
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PGARCH(1,1) models of the major World stock indices

ω̂ α̂+ α̂− β̂ δ̂

MERV 0.151 (0.002) 0.063 (0.002) 0.151 (0.001) 0.858 (0.004) 2
BVSP 0.077 (0.001) 0.068 (0.001) 0.138 (0.002) 0.884 (0.002) 2
GSPT 0.012 (0.009) 0.046 (0.002) 0.109 (0.004) 0.926 (0.007) 1
MXX 0.032 (0.003) 0.044 (0.001) 0.167 (0.002) 0.896 (0.004) 1.5
GSPC 0.016 (0.006) 0.000 (0.002) 0.134 (0.003) 0.927 (0.004) 1.5
AORD 0.023 (0.007) 0.030 (0.002) 0.131 (0.003) 0.910 (0.006) 1
SSEC 0.031 (0.010) 0.082 (0.004) 0.123 (0.003) 0.904 (0.012) 1
HSI 0.029 (0.008) 0.049 (0.003) 0.120 (0.003) 0.916 (0.009) 1
BSES 0.055 (0.004) 0.062 (0.003) 0.179 (0.002) 0.872 (0.005) 1.5
JKSE 0.063 (0.005) 0.096 (0.002) 0.190 (0.001) 0.856 (0.005) 1.5
KLSE 0.087 (0.022) 0.071 (0.002) 0.157 (0.001) 0.835 (0.014) 2
N225 0.044 (0.004) 0.038 (0.003) 0.148 (0.002) 0.898 (0.006) 1
NZ50 0.018 (0.019) 0.044 (0.006) 0.120 (0.004) 0.898 (0.010) 1.5
STI 0.027 (0.011) 0.078 (0.001) 0.178 (0.001) 0.876 (0.005) 1.5
KS11 0.017 (0.009) 0.049 (0.001) 0.121 (0.004) 0.923 (0.008) 1.5
TWII 0.028 (0.012) 0.041 (0.004) 0.123 (0.003) 0.918 (0.010) 1
ATX 0.030 (0.005) 0.050 (0.002) 0.137 (0.003) 0.902 (0.007) 1
BFX 0.027 (0.005) 0.028 (0.002) 0.154 (0.003) 0.898 (0.005) 1.5
FCHI 0.026 (0.008) 0.014 (0.003) 0.112 (0.004) 0.931 (0.009) 1
GDAXI 0.028 (0.010) 0.022 (0.003) 0.114 (0.006) 0.926 (0.011) 1
AEX.AS 0.019 (0.005) 0.030 (0.002) 0.130 (0.002) 0.917 (0.005) 1.5
SSMI 0.038 (0.008) 0.024 (0.003) 0.145 (0.004) 0.897 (0.008) 1
FTSE 0.015 (0.010) 0.017 (0.003) 0.111 (0.003) 0.935 (0.008) 1
GD.AT 0.045 (0.001) 0.104 (0.002) 0.157 (0.001) 0.865 (0.004) 2
TA10 0.088 (0.007) 0.057 (0.002) 0.178 (0.001) 0.854 (0.007) 1.5
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Correlation matrix estimate R̂ (pairwise method)
MER BVS GST MXX GSC AOR SSE HSI BSE JKS KLS N22 NZ5

MERV 1.00
BVSP 0.53 1.00
GSPT 0.47 0.48 1.00
MXX 0.47 0.52 0.48 1.00
GSPC 0.48 0.52 0.67 0.55 1.00
AORD 0.17 0.17 0.21 0.17 0.12 1.00
SSEC 0.06 0.08 0.08 0.06 0.02 0.18 1.00
HSI 0.21 0.19 0.22 0.21 0.14 0.49 0.28 1.00
BSES 0.17 0.19 0.21 0.20 0.15 0.31 0.14 0.40 1.00
JKSE 0.15 0.15 0.14 0.15 0.08 0.36 0.15 0.43 0.31 1.00
KLSE 0.10 0.10 0.11 0.12 0.06 0.28 0.14 0.36 0.19 0.32 1.00
N225 0.11 0.13 0.19 0.12 0.12 0.46 0.16 0.44 0.27 0.34 0.28 1.00
NZ50 0.09 0.06 0.10 0.09 0.04 0.48 0.16 0.31 0.21 0.29 0.22 0.38 1.00
STI 0.22 0.20 0.22 0.20 0.16 0.44 0.18 0.56 0.38 0.44 0.39 0.40 0.32
KS11 0.15 0.20 0.20 0.20 0.15 0.49 0.16 0.55 0.33 0.36 0.27 0.54 0.32
TWII 0.13 0.14 0.15 0.13 0.10 0.41 0.18 0.47 0.27 0.33 0.27 0.44 0.31
ATX 0.31 0.27 0.33 0.30 0.30 0.32 0.12 0.33 0.27 0.28 0.19 0.27 0.22
BFX 0.35 0.33 0.40 0.36 0.42 0.30 0.09 0.31 0.27 0.24 0.17 0.25 0.20
FCHI 0.37 0.36 0.44 0.39 0.47 0.26 0.06 0.31 0.28 0.21 0.15 0.26 0.17
GDAX 0.36 0.37 0.44 0.38 0.47 0.30 0.07 0.34 0.28 0.21 0.16 0.27 0.16
AEX 0.37 0.36 0.45 0.39 0.45 0.31 0.06 0.35 0.29 0.22 0.18 0.28 0.18
SSMI 0.33 0.31 0.39 0.35 0.41 0.29 0.05 0.31 0.27 0.23 0.16 0.27 0.19
FTSE 0.38 0.37 0.46 0.39 0.47 0.28 0.06 0.32 0.29 0.22 0.17 0.27 0.18
GD 0.19 0.18 0.20 0.19 0.16 0.21 0.07 0.24 0.26 0.20 0.14 0.19 0.17
TA10 0.24 0.24 0.27 0.26 0.23 0.33 0.06 0.36 0.28 0.24 0.18 0.29 0.18
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Correlation matrix estimate R̂

STI KS1 TWI ATX BFX FCH GDA AEX SSM FTS GD TA1

STI 1.00
KS11 0.50 1.00
TWII 0.45 0.51 1.00
ATX 0.32 0.28 0.23 1.00
BFX 0.30 0.25 0.19 0.56 1.00
FCHI 0.30 0.26 0.20 0.55 0.71 1.00
GDAX 0.31 0.27 0.20 0.59 0.70 0.79 1.00
AEX 0.33 0.28 0.22 0.58 0.74 0.82 0.79 1.00
SSMI 0.30 0.26 0.21 0.52 0.66 0.72 0.72 0.74 1.00
FTSE 0.31 0.27 0.19 0.54 0.66 0.77 0.70 0.76 0.69 1.00
GD 0.25 0.27 0.21 0.32 0.34 0.34 0.33 0.33 0.32 0.30 1.00
TA10 0.36 0.28 0.25 0.38 0.39 0.42 0.40 0.41 0.40 0.40 0.33 1.00
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PCA loading matrix: correlations between the
variables and the first 3 factors

PC1 PC2 PC3 PC1 PC2 PC3
MERV -0.52 -0.29 -0.46 STI -0.58 0.45 -0.09
BVSP -0.52 -0.29 -0.52 KS11 -0.55 0.50 -0.11
GSPT -0.59 -0.32 -0.41 TWII -0.46 0.50 -0.11
MXX -0.54 -0.30 -0.46 ATX -0.68 -0.08 0.22
GSPC -0.56 -0.45 -0.41 BFX -0.75 -0.25 0.27
AORD -0.55 0.46 -0.02 FCH -0.79 -0.32 0.28
SSEC -0.19 0.27 -0.14 GDA -0.79 -0.29 0.27
HSI -0.60 0.48 -0.07 AEX -0.81 -0.28 0.29
BSES -0.48 0.25 -0.04 SSM -0.75 -0.24 0.30
JKSE -0.45 0.42 -0.06 FTS -0.78 -0.28 0.21
KLSE -0.35 0.38 -0.07 GD. -0.46 0.05 0.14
N225 -0.50 0.47 -0.00 TA10 -0.57 0.06 0.10
NZ50 -0.37 0.44 0.03 34.6% 12.2% 6.5%
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Factorial plan PC2-PC3
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Conclusion

EbEE + correlation of the EbE residuals
much simpler than the FQMLE;
not necessarily less efficient;
first EbEE step valid for different correlation structures;
specification tests;
asynchronous individual series.

Preprint: http://mpra.ub.uni-muenchen.de/54250/

Thanks for your attention , !
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DCC-GARCH: A condition to obtain a quasi-strong
model

εt =Dtη
∗
t , η∗t =R1/2

t ηt, (ηt) iid (0,Im), Rt ∈F ε
t−1

Assume that (ηt) has a spherical distribution. Then
η∗kt is independent from F ε

t−1. Moreover, (η∗kt) is iid (0,1).

Proof. Denoting by ek the k-th column of Im, we have

η∗kt = e′kR1/2
t ηt

d= ‖e′kR1/2
t ‖η1 = η1,

conditionally to F ε
t−1, and thus unconditionally.

Remark: the process (η∗t ) is not independent in general:

λ1η
∗
kt+λ2η

∗
`t

d= ‖(λ1e′k+λ2e′`)R1/2
t ‖η1 = {λ2

1+λ2
2+2λ1λ2Rt(k,`)}1/2η1,

conditionally on F ε
t−1.
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SC-GARCH: A condition to obtain a quasi-strong
model

εt =Dtη
∗
t , η∗t =R∗1/2

t ξt, (ξt) iid (0,Im), R∗
t =R∗(∆t), ∆t ∉F ε

t−1.

Assume that (ξt) has a spherical distribution and is independent
from (∆t). Then η∗kt is independent from F

η∗

t−1. Moreover, (η∗kt) is
iid (0,1).

If in addition F ε
t−1 =F

η∗

t−1 then the augmented univariate
GARCH representations are quasi-strong (the asymptotic
variance is then simpler).
The multivariate model is not strong in general, since the
η∗t ’s are not independent, and not id (when (Rt) is not
stationary).
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Information sets: condition for F ε
t−1 =F

η∗
t−1

εt =Dtη
∗
t entails F

η∗

t−1 ⊂F ε
t−1. For some models (but not all),

F ε
t−1 =F

η∗

t−1.

Example: Multivariate ARCH(1) model with

σ2
it =ωi +

m∑
j=1

αijε
2
j,t−1.

Letting ht = (σ2
1t, . . . ,σ2

mt)
′ and ω= (ω1, . . . ,ωm)′, we have

ht =ω+A(η∗t−1)ht−1

where A(η∗t−1) = (αijη
∗2
j,t−1)i,j. It follows that

ht =
(
Im +

∞∑
k=1

A(η∗t−1) . . .A(η∗t−k)

)
ω ∈ F

η∗

t−1.

Return
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A condition to obtain a quasi-strong model

Assume η∗t =R∗1/2
t ξt where (ξt) iid with a spherical distribution

and R∗
t =R∗(∆t) with

(∆t) and (ξt) are independent.

Then η∗kt is independent from F
η∗

t−1. Moreover, (η∗kt) is an iid (0,1)
sequence. Sketch of proof

If in addition F ε
t−1 =F

η∗

t−1 then the augmented univariate
GARCH representations are quasi-strong (the asymptotic
variance is then simpler). The model is not strong in general,
since the η∗t ’s are not independent, and not id (when (R∗

t ) is not
stationary).
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Proof that η∗kt is independent of η∗
t−1 =R∗1/2

t−1 ξt−1

Using the independence between ξt and ξt−1 and between (R∗
t )

and (ξt),

P(η∗kt < x,η∗`,t−1 < y |R∗
t ,R∗

t−1) = P(η∗kt < x |R∗
t )P(η∗`,t−1 < y |R∗

t−1).

Because (conditional to R∗
t ), ξt is spherically distributed,

η∗kt = e′kR∗1/2
t ξt

d= ‖e′kR∗1/2
t ‖ξ1 = ξ1

and thus

P(η∗kt < x,η∗`,t−1 < y |R∗
t ,R∗

t−1) =P(η∗kt < x)P(η∗`,t−1 < y).

Return
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Technical assumptions for the consistency of the EbEE

for any real sequence (ei)i≥1, the function θ(k) 7→σk(e1,e2, . . . ;θ(k)) is
continuous and there exists K :R∞ 7→ (0,∞) such that

|σk(e1,e2, . . . ;θ(k))−σk(e1,e2, . . . ;θ(k)
0 )| ≤K(e1, . . .)‖θ(k) −θ(k)

0 ‖,

E

K(εt−1,εt−2, . . .)

σkt(θ
(k)
0 )

2

<∞.

there exists a neighborhood V (θ(k)
0 ) of θ(k)

0 such that

E sup
θ(k)∈V (θ(k)

0 )

σkt(θ
(k)
0 )

σkt(θ
(k))

2

<∞.

σkt(·) >ω for some ω> 0.

σkt(θ
(k)
0 ) =σkt(θ

(k)) a.s. iff θ(k) = θ(k)
0 .

Let ∆kt = σ̃kt(θ
(k))−σkt(θ

(k)). Let C > 0 and 0< ρ < 1. We have

sup
θ(k)∈Θ(k)

|∆kt| ≤Cρt, a.s.
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Technical assumptions for the AN of the EbEE

for any real sequence (ei)i≥1, the function θ(k) 7→σk(e1,e2, . . . ;θ(k)) has
continuous second-order derivatives;
there exists a neighborhood V (θ(k)

0 ) of θ(k)
0 such that

sup
θ(k)∈V (θ(k)

0 )

∥∥∥∥∥ 1

σkt(θ
(k))

∂σkt(θ
(k))

∂θ(k)

∥∥∥∥∥
4(1+ 1

δ
)

, sup
θ(k)∈V (θ(k)

0 )

∥∥∥∥∥ 1

σkt(θ
(k))

∂2σkt(θ
(k))

∂θ(k)∂θ(k)′

∥∥∥∥∥
2(1+ 1

δ
)

,

sup
θ(k)∈V (θ(k)

0 )

∣∣∣∣∣∣
σkt(θ

(k)
0 )

σkt(θ
(k))

∣∣∣∣∣∣
4

, have finite expectations.

sup
θ(k)∈Θ(k)

∥∥∥∥∥∂∆kt(θ
(k))

∂θ(k)

∥∥∥∥∥≤Cρt, a.s.

For k = 1, . . . ,m and for any x ∈Rdk ,

x′
∂σ2

kt(θ
(k)
0 )

∂θ(k)
= 0, a.s. ⇒ x= 0. Return
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