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Definition: GARCH(p,q)

Engle (1982), Bollerslev (1986)


εt = σtηt

σ2
t = ω0 +

∑q
i=1 α0iε

2
t−i +

∑p
j=1 β0jσ

2
t−j , ∀t ∈ Z

(ηt) iid, Eηt = 0, Eη2
t = 1,

ω0 > 0 , α0i ≥ 0 (i = 1, . . . , q) , β0j ≥ 0 (j = 1, . . . , p).

θ0 = (ω0, α01, . . . , α0q, β01, . . . , β0p).

EEA/ESEM meeting, Milan Testing the nullity of GARCH coefficients



QMLE of GARCH models Tests Nullity of one coefficient Conditional homoskedasticity Conclusion

Stricty stationarity

A0t =


α01η

2
t · · · α0qη

2
t β01η

2
t · · · β0pη

2
t

Iq−1 0 0
α01 · · · α0q β01 · · · β0p

0 Ip−1 0

 .

γ(A0) = lim
t→∞

a.s.
1
t

log ‖A0tA0t−1 . . . A01‖.

Theorem
The model has a (unique) strictly stationary non anticipative
solution iff

γ(A0) < 0.

[Bougerol & Picard, 1992]
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Quasi-Maximum Likelihood Estimation

A QMLE of θ is defined as any measurable solution θ̂n of

θ̂n = arg min
θ∈Θ

l̃n(θ),

where l̃n(θ) = n−1
∑n

t=1
˜̀
t, and ˜̀

t = ε2t
σ̃2

t
+ log σ̃2

t .

Remarks:
The constraint σ̃2

t > 0 for all θ ∈ Θ is necessary to compute
l̃n(θ).
The QMLE is always constrained: the "unrestricted" QMLE
does not exist.
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Quasi-Maximum Likelihood Estimation

Under appropriate conditions [in particular strict stationarity and
θ0 > 0] (Berkes, Horváth and Kokoszka (2003), FZ (2004))

√
n(θ̂n − θ0)

L→ N (0, (κη − 1)J−1),

κη = Eη4
t , J = Eθ0

(
1

σ4
t (θ0)

∂σ2
t (θ0)
∂θ

∂σ2
t (θ0)
∂θ′

)
.

Remark: The strict stationarity condition is essential:
Without strict stationarity, it is possible to consistently
estimate α in an ARCH(1) (Jensen and Rahbeck, 2004), but
not the intercept ω.
When the process is not strictly stationary, σ2

t →∞ in
probability.
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When θ0 is on the boundary (zero coefficients):

The asymptotic distribution cannot be normal

When θ0(i) = 0,
√

n(θ̂(i)− θ0(i)) ≥ 0, a.s. for all n.
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Technical assumptions

A1: θ0 ∈ (ω, ω)× [0, θ2)× · · · × [0, θp+q+1) ⊂ Θ, Θ compact.
A2: γ(A0) < 0 and

∑p
j=1 βj < 1, ∀θ ∈ Θ.

A3: η2
t is non-degenerate with Eη2

t = 1 and κη = Eη4
t < ∞.

A4: if p > 0, Aθ0(z) and Bθ0(z) have no common root,
Aθ0(1) 6= 0, and α0q + β0p 6= 0.
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Technical assumptions

The matrix

J = Eθ0

(
1

σ4
t (θ0)

∂σ2
t (θ0)
∂θ

∂σ2
t (θ0)
∂θ′

)
may not exist without additional moment assumptions

A5: Eθ0ε
6
t < ∞.

or

A6:
j0∏

i=1

α0i > 0 for j0 = min{j | β0,j > 0}.
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QMLE when the coefficient are allowed to be zero

Λ = lim
n→∞

√
n(Θ− θ0) = Λ1 × · · · × Λp+q+1,

Λi = R if θ0i 6= 0, Λi = [0,∞) if θ0i = 0.

Theorem
Under the previous assumptions,

√
n(θ̂n − θ0)

d→ λΛ := arg inf
λ∈Λ

{λ− Z}′ J {λ− Z} ,

Z ∼ N
(
0, (κη − 1)J−1

)
,

[FZ, 2007]
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Testing the nullity of GARCH coefficients

Motivations:

- Before proceeding to the estimation of a GARCH model, it is
sensible to make sure that such a sophisticated model is justified.

- When a GARCH effect is present in the data, it is of interest to
test if the orders of the fitted models can be reduced, by testing the
nullity of the higher-lag ARCH or GARCH coefficient.

- Because the QMLE is positively constrained, its asymptotic
distribution is not gaussian, and thus standard tests (such as the
Wald or LR tests) based on the QMLE do not have the usual χ2

asymptotic distribution.
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Hypotheses

θ0 = (θ(1)
0 , θ

(2)
0 )′, θ(i) ∈ Rdi , d1 + d2 = p + q + 1.

Null hypothesis:

H0 : θ
(2)
0 = 0 i.e. Kθ0 = 0d2×1 with K =

(
0, Id2

)
.

Maintained assumption:

H : θ
(1)
0 > 0 i.e. Kθ0 > 0 with K =

(
Id1 , 0d1×d2

)
.

Local one-sided alternatives:

Hn : θ = θ0 + τ√
n
, with θ

(2)
0 = 0, τ ∈ (0,+∞)p+q+1.
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Testing problems in which, under the null, the parameter is on the
boundary of the maintained assumption:

Andrews, D. W. K.
Testing when a parameter is on a boundary of the maintained hypothesis.
Econometrica 69, 683–734, 2001.

Bartholomew D. J.
A test of homogeneity of ordered alternatives.
Biometrika 46, 36–48, 1959.

Chernoff, H.
On the distribution of the likelihood ratio.
Annals of Mathematical Statistics 54, 573–578, 1954.

Gouriéroux, C., Holly A., and A. Monfort
Likelihood Ratio tests, Wald tests, and Kuhn-Ticker Test in Linear Models with inequality
constraints on the regression parameters.
Econometrica 50, 63–80, 1982.

Perlman, M.D.
One-sided testing problems in multivariate analysis.
The Annals of mathematical Statistics, 40, 549-567, 1969.
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Tests against one-sided alternatives:

King, M. L. and P. X. Wu
Locally optimal one-sided tests for multiparameter hypotheses.
Econometric Reviews 16, 131–156, 1997.

Rogers, A. J.
Modified Lagrange multiplyer tests for problems with one-sided alternatives.
Journal of Econometrics 31, 341–361, 1986.

Silvapulle, M. J. and P. Silvapulle
A score test against one-sided alternatives.
Journal of the American Statistical Association 90, 342–349, 1995.

Wolak, F. A.
Local and global testing of linear and non linear inequality constraints in non linear econometric
models.
Econometric Theory 5, 1–35, 1989.
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Tests exploiting the one-sided nature of the ARCH alternative, against
the null of no ARCH effect:

Andrews, D. W. K.
Testing when a parameter is on a boundary of the maintained hypothesis.
Econometrica 69, 683–734, 2001.

Demos, A. and E. Sentana
Testing for GARCH effects: A one-sided approach.
Journal of Econometrics 86, 97–127, 1998.

Dufour, J.-M., Khalaf, L., Bernard, J.-T. and Genest, I.
Simulation-based finite-sample tests for heteroskedasticity and ARCH effects.
Journal of Econometrics 122, 317–347, 2004.

Hong, Y.
One-sided ARCH testing in time series models.
Journal of Time Series Analysis 18, 253–277, 1997.

Hong, Y. and J. Lee
One-sided testing for ARCH effects using wavelets.
Econometric Theory 17, 1051–1081, 2001.

Lee, J. H. H. and M. L. King
A locally most mean powerful based score test for ARCH and GARCH regression disturbances.
Journal of Business and Economic Statistics 11, 17–27, 1993.
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Usual forms of the Wald, Rao and QLR statistics

Wn =
n

κ̂η − 1
θ̂(2)′
n

{
KĴ−1

n K ′
}−1

θ̂(2)
n ,

Rn =
n

κ̂η|2 − 1

∂ l̃n
(
θ̂n|2

)
∂θ′

Ĵ−1
n|2

∂ l̃n
(
θ̂n|2

)
∂θ

,

Ln = n
{
l̃n
(
θ̂n|2

)
− l̃n

(
θ̂n

)}
,

θ̂n|2 : constrained estimator of θ0.

Standard (invalid) asymptotic critical regions at level α :

{Wn > χ2
d2

(1− α)}, {Rn > χ2
d2

(1− α)}, {Ln > χ2
d2

(1− α)}.

EEA/ESEM meeting, Milan Testing the nullity of GARCH coefficients



QMLE of GARCH models Tests Nullity of one coefficient Conditional homoskedasticity Conclusion

Asymptotic distributions of the statistics under the null

Under H0 and the assumptions required for the asymptotic
distribution of the QMLE

Wn
L→ W = λΛ′ΩλΛ,

Rn
L→ χ2

d2
,

Ln
L→ L

= −1
2

{
inf

Kλ≥0
‖Z − λ‖2

J − inf
Kλ=0

‖Z − λ‖2
J

}
.

Ω = K ′ {(κη − 1)KJ−1K ′}−1
K.
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α 7→ log Ln(ω̂, α) for an ARCH(1) with α0 = 0

α̂n > 0 =⇒ Wn > 0, Rn > 0, Ln > 0

α̂n = 0 =⇒ Wn = Ln = 0, Rn > 0
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Power comparisons under fixed alternatives

In Bahadur’s (1960) approach the efficiency of a test is measured
by the rate of convergence of its p-value under a fixed alternative
H1 : θ

(2)
0 > 0.

Let SW(t) = P(W > t), SR(t) = P(R > t) where R ∼ χ2
d2

, and
SL(t) = P(L > t)
(asymptotic survival functions of the statistics under H0.)
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Power comparisons under fixed alternatives
Proposition

Under H1 : θ
(2)
0 > 0 and under A1-A4, the approximate Bahadur

slope of the Wald test is

lim
n→∞

− 2
n

log SW(Wn) =
1

κη − 1
θ
(2)′

0

(
KJ−1K ′)−1

θ
(2)
0 , a.s.

Moreover, under regularity conditions, with θ0|2 = a.s. lim θ̂n|2,

lim
n→∞

− 2
n

log SR(Rn) =
1

κη|2 − 1
D′(θ0|2)KJ−1

0|2K ′D(θ0|2),

lim
n→∞

− 2
n

log SL(Ln) = Eθ0

(
log

σ2
t (θ0|2)
σ2

t (θ0)

)
.

It follows that the Wald, score and QLR tests are consistent against
H1.
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Distributions under local alternatives

Hn(τ) : θ = θ0 + τ√
n

= θn, Kθ0 = 0 and τ ∈ [0,+∞)p+q+1.

Theorem
Under Hn(τ),

√
n(θ̂n − θn) L→ arg inf

λ∈Λ
{λ− Z − τ}′ J {λ− Z − τ} − τ,

:= λΛ(τ)− τ

Wn
L→ W(τ) = λΛ(τ)′ΩλΛ(τ),

Rn
L→ χ2

d2

{
τ ′Ωτ

}
,

Wn
oP (1)
=

2
κ̂η − 1

Ln.
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H0 : α0i = 0 (or H0 : β0j = 0)

ex: GARCH(p− 1, q) vs GARCH(p, q).
Under H0: θ0 = (θ01, θ02, . . . , θ0,p+q, 0)

Λ = Rp+q × [0,∞), γi =
E(Zp+q+1Zi)
Var(Zp+q+1)

√
n(θ̂n − θ0)

L→ λΛ =


Z1 − γ1Z

−
p+q+1

...
Zp+q − γp+qZ

−
p+q+1

Z+
p+q+1
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Example: Noise estimated as an ARCH(1): θ0 = (ω0, 0)′

Asymptotic distribution of
√

n(ω̂n − ω0)

-4 -3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

Asymptotic distribution of
√

nα̂n

-1 1 2 3

0.1

0.2

0.3

0.4
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H0 : α0i = 0 (or H0 : β0j = 0)

Asymptotic distribution of the Wald and LR test statistics:

W =
2

κη − 1
L 

1
2
δ0 +

1
2
χ2

1.

The tests defined by the critical regions

{Wn > χ2
1(1− 2α)} { 2

κ̂η − 1
Ln > χ2

1(1− 2α)}

have asymptotic level α (for α ≤ 1/2).

The standard test {Wn > χ2
1(1− α)} has asymptotic level α/2.
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Asymptotic behaviour of the standard tests

Table: Asymptotic levels of the standard Wald and QLR tests of nominal
level 5%.

Kurtosis of η 2 3 4 5 6 7 8 9 10
Standard Wald 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Standard QLR 0.3 2.5 5.5 8.3 10.8 12.9 14.7 16.4 17.8
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Comparison of the modified tests under local alternatives

Proposition
Under Hn(τ) : θ = θ0 + τ√

n
, τ > 0, and d2 = 1,

lim
n→∞

P
{
Wn > χ2

1(1− 2α)
}

> lim
n→∞

P
{
Rn > χ2

1(1− α)
}

.
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Local asymptotic powers (d2 = 1)

Modified Wald test (full line)
Score test (dashed line)

1 2 3 4

0.2

0.4

0.6

0.8

1

τd/σd
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Optimality of the modified Wald test (d2 = 1)

LAN property for GARCH models (Drost and Klaassen (1997), Ling and
McAleer (2003))

Assume ηt has density f with
∫
{1 + yf ′(y)/f(y)}2 f(y)dy < ∞.

Corollary
The modified Wald test is asymptotically optimal iff the density f of ηt is
of the form

f(y) =
aa

Γ(a)
exp(−ay2)|y|2a−1, a > 0.
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Testing conditional homoskedasticity versus ARCH(q):
H0 : θ0 = (ω0, 0, . . . , 0)

Λ = R× [0,∞)q.

We have, with e = (1, . . . , 1)′

Z ∼ N
{

0, (κη − 1)J−1 =
(

(κη + 1)ω2
0 −ω0e

′

−ω0e Iq

)}
.

√
n(θ̂n − θ0)

L→ λΛ =


Z1 + ω0(Z−

2 + · · ·+ Z−
q+1)

Z+
2
...

Z+
q+1

 .
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Testing conditional homoskedasticity versus ARCH(q):
H0 : α01 = · · · = α0q = 0

Some simple statistics:
As noted by Engle (1982), the score test is very simple to
compute:

Rn = nR2,

where R2 is the determination coefficient in the regression of
ε2t on a constant and ε2t−1, . . . , ε

2
t−q.

An asymptotically equivalent version is

R∗
n = n

q∑
i=1

ρ̂2
ε2(i),

where ρ̂ε2(i) is an estimator of the i-th autocorrelation of (ε2t ).
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The Wald statistic also has a simple version:

W∗
n = n

q∑
i=1

α̂2
i .

Lee and King (1993) proposed a test which exploits the
one-sided nature of the ARCH alternative.

LKn =
1
√

q

q∑
i=1

√
nρ̂ε2(i).
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Asymptotic null distributions

Proposition

Under H0 and A3 (η2
t non-degenerate, Eη2

t = 1, Eη4
t < ∞),

W∗
n

d→ 1
2q

δ0 +
q∑

i=1

(
q
i

)
1
2q

χ2
i ,

R∗
n

d→ χ2
q ,

LKn
d→ N (0, 1).
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Power comparisons under fixed alternatives

Asymptotic relative efficiencies (ARE) are defined by the ratios of
the approximate Bahadur slopes.

Proposition

Let (εt) be a strictly stationary and nonanticipative solution of the
ARCH(q) model with E(ε4t ) < ∞ and

∑q
i=1 α0i > 0. Then,

ARE(R∗/LK) =
q
∑q

i=1 ρ2
ε2(i)

{
∑q

i=1 ρε2(i)}
2 ≥ 1,

ARE(R∗/W∗) =
∑q

i=1 ρ2
ε2(i)∑q

i=1 α2
0i

≥ 1,

ARE(R/W∗) =
κε − κη

κη(κε − 1)
∑q

i=1 α2
0i

≥ 1,

with equalities when q = 1.
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Efficiency rankings under fixed alternatives

ARCH(1) alternative:

W ≺ L ≺ R ∼ R∗ ∼ W∗ ∼ LK

ARCH(2) alternative:

W ≺ L ≺ W∗ ≺ R ≺ R∗.

The LK cannot be ranked in general: it can have the lowest or the
highest asymptotic efficiency depending on the parameter values.
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Local asymptotic powers (d2 = q)

Under the local alternatives Hn(τ), τ > 0, the local asymptotic
powers are given by

lim
n→∞

P
{
Wn > cWα

}
= P

{
q∑

i=1

(Ui + τi)21l{Ui+τi>0} > cWα

}

lim
n→∞

P
{
Rn > cRα

}
= P

{
χ2

q

(
q∑

i=1

τ2
i

)
> cRα

}

lim
n→∞

P {LKn > cα} = 1− Φ
(

cα −
∑q

i=1 τi√
q

)
,

where U = (U1, . . . , Uq)′ ∼ N (0, Iq).
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The LK test is locally asymptotically optimal in the direction
τ1 = · · · = τq when f(y) = aa

Γ(a) exp(−ay2)|y|2a−1, a > 0.

Moreover, it is locally asymptotically "most stringent somewhere
most powerful".

(see Akharif and Hallin (2003) for the concept of MSSMP).

EEA/ESEM meeting, Milan Testing the nullity of GARCH coefficients



QMLE of GARCH models Tests Nullity of one coefficient Conditional homoskedasticity Conclusion

Local asymptotic powers (d2 = 2)

Wald test (full line), score test (dashed line), Lee-King test (dotted line)

α1 = α2 = τ/
√

n

1 2 3 4

0.2

0.4

0.6

0.8

1

α1 = τ/
√

n, α2 = 0 ( or α1 = 0, α2 = τ/
√

n)

1 2 3 4

0.2

0.4

0.6

0.8

1
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Table: p-values for tests of the null hypothesis of a GARCH(1, 1)
model for daily stock market returns.

Index alternative
GARCH(1,2) GARCH(1,4) GARCH(2,1)

Wn Rn Ln Wn Rn Ln Wn Rn Ln

CAC 0.018 0.069 0.028 0.006 0.000 0.003 0.500 0.457 0.500
DAX 0.004 0.002 0.005 0.002 0.000 0.001 0.335 0.022 0.119
DJA 0.318 0.653 0.323 0.471 0.379 0.475 0.500 0.407 0.500
DJI 0.089 0.203 0.098 0.168 0.094 0.179 0.500 0.024 0.500
DJT 0.500 0.743 0.500 0.649 0.004 0.649 0.364 0.229 0.251
DJU 0.500 0.000 0.500 0.648 0.000 0.648 0.004 0.000 0.002
FTSE 0.131 0.210 0.119 0.158 0.357 0.143 0.414 0.678 0.380
Nasdaq 0.053 0.263 0.092 0.067 0.002 0.123 0.500 0.222 0.500
Nikkei 0.010 0.003 0.008 0.090 0.479 0.143 0.201 0.000 0.015
SP 500 0.116 0.190 0.107 0.075 0.029 0.055 0.500 0.178 0.500
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Conclusions

Caution is needed in the use of standard statistics for testing
the nullity of coefficients in GARCH models, because the null
hypothesis puts the parameter at the boundary of the
parameter space.
The asymptotic sizes of the standard Wald and QLR tests can
be very different from the nominal levels based on (invalid) χ2

distributions.
The modified Wald and QLR tests remain equivalent under the
null and local alternatives.
The usual Rao test remains valid for testing a value on the
boundary, but looses its local optimality properties.
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For testing the nullity of one coefficient the modified Wald and
QLR tests are locally asymptotically optimal for a certain class
of densities.
For testing conditional homoscedasticity:
the one-sided Lee-King test has optimality properties but only
for alternatives in certain directions.
The modified Wald test{

n

q∑
i=1

α̂2
i > cq,α

}
, P

(
1
2q

δ0 +
q∑

i=1

(
q
i

)
1
2q

χ2
i > cq,α

)
= α,

can be recommended: from both local and non local points of
view, theoretical and numerical results suggest that it is always
close to the optimum.
The GARCH(1,1) is certainly over-represented in financial
studies.
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