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Abstract. A class of univariate time series models is considered, which allows
general specifications for the conditional mean and conditional variance functions.
After deriving the asymptotic distributions of the residual autocorrelations based on
the standardized residuals, portmanteau test statistics are studied. If the asymptotic
covariance of a vector of fixed length of residual autocorrelations is non singular,
portmanteau test statistics could be defined, following the approach advocated
by Li (1992). However, assuming the invertibility of the asymptotic covariance of
the residual autocorrelations may be restrictive, and, alternatively, the popular
Box-Pierce-Ljung test statistic may be recommended. In our framework, that test
statistic converges in distribution to a weighted sum of chi-square variables, and
the critical values can be found using Imhof’s (1961) algorithm. However, Imhof’s
algorithm may be time consuming. In view of this, we investigate in this article the
use of generalized inverses and {2}-inverses, in order to propose new test statistics
with asymptotic chi-square distributions, avoiding the need to implement Imhof’s
algorithm. In a small simulation study, the following test statistics are compared:
Box-Pierce-Ljung test statistic, the test statistic based on the proposal of Li (1992),
and the new test statistics relying on generalized inverses and {2}-inverses.
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1 Introduction

Let {Y;} be a stationary stochastic process. We consider the following uni-
variate time series model:

Y; =me,(Yi—1,Yi—2,...) + 06, (Yio1,Yi2,... )0, (1)

where 8y denotes a s dimensional vector of unknown parameters belonging
to a subset ©, where ©® C R®. The error process {n;} is an independent and
identically distributed (iid) sequence of random variables with mean zero and
unit variance. It is assumed that the random variable 7; is independent of
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{Y;—i,i > 0}. The nonlinear model (1) represents a very general class of time
series models with a general specification for the error term. It includes the
classical autoregressive moving-average (ARMA) time series model, with pos-
sible [general] conditional heteroskedasticity ((GJARCH) in the error process,
and also nonlinear models, such as threshold autoregressive models (TAR),
self-exciting TAR models (SETAR), and smooth versions of TAR models.
Tong (1990) and Granger and Terésvirta (1993) provide surveys of univari-
ate nonlinear models.

Let Y;, t = 1,...,n be a finite realization of the stochastic process {Y;}.
An important practical aspect is to validate an adjusted model such as (1),
using estimation procedures such as quasi-maximum likelihood (QML) and
nonlinear least squares (NLS) methods (the latter being obtained by assum-
ing a constant conditional variance). Klimko and Nelson (1978) investigated
general properties of conditional least squares estimators in univariate non-
linear time series. See also Potscher and Prucha (1997) and Taniguchi and
Kakizawa (2000), amongst others.

Residual autocorrelations have been found useful for checking model ad-
equacy of many time series models (see, e.g., Li (2004)). In view of this fact,
we first derive the asymptotic distributions of the residual autocorrelations
based on the standardized residuals. As an application of that result, port-
manteau test statistics are studied. If the asymptotic covariance of a vector
of fixed length of residual autocorrelations is non singular, portmanteau test
statistics could be defined, following the approach advocated by Li (1992).
However, assuming the invertibility of the asymptotic covariance of the resid-
ual autocorrelations may be somewhat restrictive. For example, in validating
an ARMA model with an iid error term, it is well-known that the asymptotic
covariance matrix of a vector of fixed length of residual autocorrelations is
approximatively idempotent, with rank n — p — ¢, where p and ¢ correspond
to the autoregressive and moving average orders, respectively. On the other
hand, if model (1) represents a nonlinear time series model, such as the TAR
model considered in Li (1992), then, under some conditions, the asymptotic
covariance matrix is expected to be non-singular. See also Li (2004, pp. 79-80).
For a given model, the precise conditions which guarantee the invertibility of
the asymptotic covariance matrix may be hard to obtain. Alternatively, the
popular Box-Pierce-Ljung test statistic may be recommended (see Li (2004),
amongst others). In our framework, this test statistic converges in distribu-
tion to a weighted sum of chi-square variables, where, in practice, the weights
are determined with the data (see Francq, Roy and Zakoian (2005) for general
results in the context of ARMA models with weak errors). Interestingly, the
range of applicability of Box-Pierce-Ljung test statistic appears to be more
general, in the sense that if the asymptotic covariance matrix is non-singular,
then all weights are strickly positive. However, contrary to the test procedure
of Li (1992, 2004), the Box-Pierce-Ljung test statistic is still appropriate in
linear time series models: for an AR(1) time series model, say, one weight
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in the weighted sum of chi-square variables is identically equal to zero, and
the others weights are strictly positives. In practice, the critical values of the
Box-Pierce-Ljung test statistic can be found using Imhof’s algorithm. Even
today, it may be still time consuming to implement this algorithm, since,
to the best of our knowledge, Imhof’s algorithm is not actually available in
popular softwares such as S-PLUS or R.

Since the asymptotic covariance matrix of a vector of fixed length of resid-
ual autocorrelations may be essentially singular in linear time series models,
and, under certain assumptions, invertible in non-linear time series models,
we investigate here the use of generalized inverses, such as the Moore-Penrose
inverse, and also of {2}-inverses of that covariance matrix. This leads us
to propose new portmanteau test statistics with asymptotic chi-square dis-
tributions. These new test statistics avoid the need to implement Imhof’s
algorithm. In a small simulation study, the following test statistics are com-
pared with respect to level and power: Box-Pierce-Ljung test statistic, the
test statistic based on the proposal of Li (1992), a new test statistic relying
on the Moore-Penrose inverse, and several new proposals relying on {2}-
inverses. The rest of the paper is organized as follows. In Section 2, we derive
the asymptotic distribution of the residual autocorrelations. Classical port-
manteau test statistics are discussed in Section 3. In Section 4, modified test
statistics are presented. A small simulation study is conducted in Section 5.

2 Asymptotic distribution of the residual
autocorrelations

Consider model (1). The first and second conditional moments are given by:

me(0o) :==mey(Yi—1,Yi—2,...) =EY: | Yio1,Yi2,...),
U?(GO) = Uzo(yrt—lzyrt—Qa" ) = Var()/t ‘ Y;f—lzyrt—Qa" ')7

respectively. Given the time series data Yi,...,Y,, and the initial values
Yo = 9o,Y—1 = y_1,..., at any 6 € O the conditional moments m;(0) and
0?(0) can be approximated by the measurable functions defined by m;(0) =
me(Yi—1,...,Y1,%,...) and 67(0) = 03(Y;i-1,...,Y1,90,...), respectively.
A natural choice for the initial values is to specify ¥; = 0 for all : < 0. A
QML estimator of 6 is defined as any measurable solution 8,, of

én = arg Glrelf@ Qn(o),

where Q,(0) = n~' 27, & and £ = £,(0) = (Y; — my)? /67 + log 7. Tt can
be shown that the QML estimator is consistent and asymptotically normal
under Assumption A.

Assumption A: (i) © represents a compact set and the functions 8 —
m¢(0) and @ — 53(0) > 0 are continuous; (ii) {Y;} corresponds to a non an-
ticipative strictly stationary and ergodic solution of (1); (iii) Elog™ 07 (0) <
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0o for all @ € ©, and Elog’ o}(0y) < oo; (iv) supgeo ‘Et —Zt‘ -0
a.s. as t— oo, where (;(0) = (Y; —my)? /ol +logo?; (v) if @ # 6y
then  my(0) # mi(0o) or o7(0) # 07(00) with non zero probability;
(vi) Bg belongs to the interior o of O; (vii) @ — my(0) and 0 — o,(0) admit
continuous third order derivatives, and

3°4:(0)

Esup |55, 96,00,

GE@

<oo Vi, j k.

(viii) The moments p; = Eni, i < 4, and the information matrices I =
E[{00:(00)/00}{00(00)/00'}] and J = E{0%(;(0,)/0000'} exist. Further-

more, I and J are supposed to be non singular.

Write @ = b when a = b+ ¢. Under Assumption A:

A

01:11) _1 1 n C )
Va0, — 80) ‘2 _g %;zﬁjv(o,zgn) 2)

as n — oo, where Zén =J '1J ! and

_ @amt (6o) o i@a?(ﬂo)
Z, zot +{1 t}at2 50

Following the current practice, the information matrices I and J are consis-
tently estimated by their empirical counterparts, that is by the formula I =
n~ty 1{8&( )/60}{8&( »)/00'} and J=n! > 62£t( n)/0000,
respectlvely
Define the following standardized residuals:
Y; — (0
o= o) oy
Ut(gn)
Portmanteau test statistics based on the autocorrelations of the residuals
are routinely performed for model adequacy checking. In order to derive the
asymptotic distribution of the residual autocorrelations, some additional no-
tations are needed. Let

Y —my(0)
O't(g) ’

Yy — m(0)

nt(o) = O't(g)

i (0) =

so that n; = m:(0g) and 1y = ﬁt(én). For any fixed integer m > 1, let

Yoo = (Y15 v(m)' s py = (p(1),- .., p(m))'
where, for £ > 0,

1 n—{

y(6) = -~ Zﬂth and p(f) = 2 0)°
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Note that ~,), A S Xy where Xy = mymy_qy_p, and my_q,y_p, =
(Mt—1y---yMt—m)". In view of (2), the central limit theorem applied to the mar-
tingale difference {(Z},7})";0(nu, u < t)} implies the following asymptotic
distribution:

9, — 5, 3,
I R I E AT 0| EE

where I, denotes the identity matrix of order m and:
-1
Yoy, =—J EZ T,
1 amt(()o) ' 1 agt( )
o 06 —p Mi-1:t-m T o2 00 My tit—m-

We now turn to the residual autocorrelation function 4(-) obtained by replac-
ing n; by 7 in p(+). Similarly, define the function 4(-) and the vectors 4,,, and
Pm- A Taylor expansion of the function 8 — n~! Z?:_f n¢(0)1:4¢(0) around

6., and 8, gives (¢ orlt) Y(€) + €,(8,, — 8y), where

6 Nt o Mt % e 6Ut
= B pg (o) = Eat(Og){ 56 )" 55, (80) 06 @)
Ni—e Omy
ot(6o) 00

Using (3) and the notation C,,, = (e1 €2 -+ €,), it follows that:

VA, SN {02, )
as n — oo, where Xy = I, + C’;nEénCm + C;nZénTm + z‘gnrmcm
Some simplifications are possible. First, we note that Yoy, = —2J7'C,, +

psd "' Dy, where Dy, = (dids -+ dn) and dy = Eny_¢o; >00%(600)/08.
Thus, the asymptotic covariance matrix can be written as:

Yy =Iy,+C,J'1J'C, —4C,J 'Cp,
+u3 (Chod ™ 'Dpy + D, T7'Cy) (4)

Since 4(0) = 1 4+ op(1), the asymptotic distribution of the residual autocor-
relations follows easily:

=2J'E— +J s E—

(6o).

Vb, S N{0,5, }, (5)

where X, = X4 . One can define empirical estimates ém and f)m by
replacing ¢y and dy in C,,, and D,, by

N 1 - nt Vi Omt 1 - ﬁt,[ 80't2

C) = ——
n t:lJrl ( ) 80

—0,) and d;==
n
t=t+1 9

We then obtain an estimator i‘;,m of ¥ by replacing p3 and the matrices
I,J,C,, and D,, by their empirical counterparts in (4).
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3 Classical portmanteau tests

3.1 Box-Pierce-Ljung test statistics

For checking the adequacy of an ARMA (p, ¢) model, it is customary to employ
the so-called portmanteau tests, such as the Box-Pierce-Ljung test statistic
QBPL = n(n+2)Y ", p>(i)/(n —i). When diagnosing ARMA models, the
null hypothesis of an ARMA(p, q) model is rejected at the nominal level «
when QEFL > an_(pﬂ)(l — a), where m > p+ ¢ and x?(1 — a) denotes the
(1 — a)-quantile of a x? distribution with ¢ degrees of freedom.

More generally, when the conditional mean mg,(-) and the conditional
variance g, () are well specified in (1), the residual autocorrelations p(h)
are expected to be close to zero for all h # 0. Therefore, it is natural to reject
the null hypothesis Hy that the data generating process (DGP) is the model
(1) when [|/np,,||? is larger than a certain critical value. More precisely, (5)
shows that, under the null hypothesis Hy of model adequacy:

m
QBPL 5 Z NZ?  asn — oo, (6)
i=1
where Z1,...,Z,, correspond to independent N'(0,1) random variables and

AL,y. .., A represent the eigenvalues of X', . For an ARMA(p, ¢) model with
iid errors, it is shown in McLeod (1978) that the p + ¢ smallest eigenvalues
A; are close to zero and that the other eigenvalues are equal to one. Thus, we
obtain a x2,_, approximation, where s = p + ¢ is the number of estimated
parameters, for the asymptotic distribution of QBFL when the DGP is an
ARMA (p, q) model with iid errors.

When the errors are uncorrelated but not independent, and when the
ARMA coefficients are estimated by least squares, it is shown in Francq,
Roy and Zakoian (2005) that the asymptotic distribution of QBFL is poorly
approximated by the chi-square distribution x?2,_,.

In this paper, the framework is different from the one considered in
Francq, Roy and Zakoian (2005): here, a more general model is permitted
than the classical ARMA model. However, in the present set-up, the error
process {n:} is assumed to be iid and the error term in (1) represents a
martingale difference sequence.

It is clear that all the eigenvalues of the matrix X, are positive and
that, when u3 = 0 and m > s, at least m — s of its eigenvalues are equal
to one. When pz = 0 and m > s, we then have lim,_ o P(QEFL > z) >
P(x2,_, > ). Consequently, the test statistic defined by the critical region
{QBPL > x2 _ (1 —a)} is expected to be liberal at the nominal level a. In
the sequel, this test statistic will be referred to as the x3,_,-based (BPL,z )
Box-Pierce-Ljung portmanteau test statistic.

It is possible to evaluate the distribution of the Gaussian quadratic form
in (6) by means of Imhof’s algorithm. Following Francq, Roy and Zakofan
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(2005), one can thus propose a modified portmanteau test statistic based on
the following steps: 1) compute the eigenvalues Aq,. .., Am of a consistent

3 3
~

estimator X, of X,  2) evaluate the (1 — a)-quantile caM,y .o Am) of
S AZ2 using Tmhof’s algorithm, 3) reject the null that the DGP is (1)
when np., p,, > ca(M,- .., Am). For further reference, this test statistic will
be referred to as the Imhof-based (BPLypos) Box-Pierce-Ljung portmanteau

test statistic. Compared to the BPLXQ ~method, the BPLy,;n0y version is

asymptotically more accurate (since the x?2,_, distribution is only a crude
approximation of the true asymptotic distribution), but the BPLpp0s test
statistic is relatively more involved to implement since an estimator of X5
is required, and Imhof’s algorithm must be implemented, which is relatively
complicated and may be time consuming. Section 4 below proposes alterna-
tives to BPLXEVS and BPLy,507 portmanteau test statistics.

3.2 An example

The autoregressive (AR) and the autoregressive conditional heteroscedastic
(ARCH) models are among the most widely used models for the conditional
mean and conditional variance. We combine the simplest versions of these
two models to obtain the AR(1)-ARCH(1) model:

Vi = aoYi-1 + €,

N " : (7)

t = 0N, OF = Wo + Qp€j_q.-
Under very general assumptions, Assumption A holds true (see Francq and
Zakoian (2004), who discuss Assumption A in the framework of ARMA-
GARCH models). The unknown parameter is 8y = (ag,wo, ). In order to
be able to compute explicitly the information matrices I and J, we assume
ag = 0. We then have:

Y,_ 0
dl (0 =1 1
Wo) o 5 (o ) va-mp | 1
/Wo 0 Wo €t2—1
and
2Y2 | 2 Viiy 2mYicie,_ 2(n7 —1)es—1Yi—»
) wo W3/? wi/? + wo
941 (00) _ 2o (2m; —1)e;_,
5606’ wg , 90,
(2n; —1)ey_q
w2
4]
Thus we have:
4 2
T=a7 243
80,(6,) RPN 1
I = Var 50 0 MW = )

23 H= iy (pa — 1)
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2

— 0 0
J = E% = ' an A1
- 0006 “o o
0 oo M4
and 2 wops(1—af) p3(1—aj)
1;(?2 2) - pa—1 pa—1
To, = | —EES Wi —wp
2 2
Hséi:‘llo) —wy 1

Note that, when n; ~ A(0,1), we have I = 2J and Yy, = 2J 1. We also

have .
Cm:_<1 ag  --- agl_>’ Dm:< 02><7z1 )
02><m M3 m—1

Note that D!, J~'C,, =0, J7'C,, = C,,(1-a2)/2and I C,, = C,,4/(1 —
a3) + 2u3C’,, where C}, is obtained by permuting the rows 1 and 3 of Cp,
so that C!, C? = 0. It follows that

¥y =In—(1-a)C,,Cp

When m is large or ag is close to 0, X5 =~ I, — C,, (CmC;n)f1 C,, is
close to a projection matrix with m — 1 eigenvalues equal to 1, and one
eigenvalue equals to 0. Therefore, in this particular situation where ag = 0,
the asymptotic distribution of the Box-Pierce-Ljung test statistics can be
approximated by a x2,_; distribution. Note that this is not the approximation
usually employed in the ARMA case, namely the x2, _, where s is the number
of estimated parameters.

3.3 Test statistic based on a proposal of Li (1992)

Assume X, to be non-singular. A natural approach considered by Li (1992,
2004) in non- 1-linear time series with independent errors consists to define the
following test statistic:

QN =npl 2, b, (8)

which follows asymptotically a x?, distribution under the null hypothesis
Hj that the DGP satisfies (1), provided E . corresponds to a consistent
estimator of the nonsingular matrix X,

However, as suggested by the example of the preceding section, the matrix
X5, is not invertible in the ARMA case and conditions which guaranty the
invertibility of that asymptotic matrix seem difficult to find. If X, is sin-
gular, this invalidates the asymptotic x?2, distribution. In practice, numerical
instability is expected in the computation of QINY when X5, is singular.

In the next section, we investigate the use of several generalized inverses
of the matrix i‘;,m. Basic results on generalized inverses are reviewed in the
next section.
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4 Modified portmanteau tests using generalized
inverses and {2}-inverses

4.1 Generalized inverses and {2}-inverses

A generalized inverse (g-inverse) of a matrix ¥ is a matrix X satisfying
Y3 XY = X. Usually this condition is the first of the four conditions defin-
ing the (unique) Moore-Penrose inverse of X, and X is called a {1}-inverse
(Getson and Hsuan (1988)). On the other hand, a {2}-inverse of X' is any
matrix X* satisfying the second relation defining the Moore-Penrose in-
verse of X, that is X* X X" = X", When both requirements are satisfied,
the resulting matrix is sometimes called a reflexive g-inverse or a {1,2}-
inverse (Rao (1973, p. 25)). Let X' # 0 be a positive semidefinite sym-

metric matrix of order m, with eigenvalues Ay > Ay > --- > A > 0.
The spectral decomposition of X' is ¥ = PAP' = " \jv;v}, where
A = diag(Ay, ..., A\p) and the columns vy, ..., v, of the matrix P constitute
an orthonormal basis of R™. If A,,,_s > 0 and A\,,_s41 = -+ = A, = 0,
then the matrix ¥~ = PA~P' where A~ = diag(\;!,...,\,',,0.) is
the Moore-Penrose inverse (or pseudo-inverse) of X. For k = 1,...,m — s,
let the matrix ¥ * = PA*P' where A% = diag(\[',...,\;', 0, ).

The matrix A™* is always a {2}-inverse, but this is not a g-inverse of X
when k < m — s. Now suppose that Z ~ A(0,,,X). Then, using nat-
ural notations, we have A *'/?P'Z ~ N {0,,,diag(1},0!, )} and thus
Z'5+Z = ||A Y2 P'Z||? ~ x2. Now suppose that Z, 5 N(0,,, X) and
¥, — X in probability, as n — oc. For k = 1,...,rank(X), the matrix
X 7* exists and can be approximated by X *, for all large enough n (Note,
however, that the matrices ¥ 7% and X, * are not unique, because they de-
pend on the particular choice of the orthonormal basis in the decompositions
Y = PAP' and ¥,, = P,A,P)). Using the continuity property of the
eigenvalues and eigenprojections (see Tyler (1981)), it can be shown that:

Z' X Z, 52, Vk<rank(X). (9)

The condition k < rank(X) appears to be essential: for example, take:

1 _ /o=l
%, = P AP, An:<10>,Pn: e 0

aes{(@) (51) o0

Then Z, 5 N(0s,X) and X, - X with ¥ = diag(0,1), but Z, X 2Z,, ~

and

c
(c+-5—£)Z} +(2— 1)Z3 4 x3. In the next subsection, test statistics will

n2 n
be constructed, relying on an appropriate estimator of the Moore-Penrose
inverse, and on estimators of the {2}-inverses considered in this section.
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4.2 Generalized portmanteau test statistics

Consider a consistent estimator 2[3,,, of the matrix ¥, . Since ¥, in (5)
may be singular, one can propose:

Qm’ =nb T, s (10)

where E is an estimator of the Moore-Penrose inverse of X, . At the
nominal level «, the null hypothesis Hy that the DGP follows a nonhnear
model of the form (1) is rejected when QM¥ > i (1 — a), with k, the

number of eigenvalues of Ebm larger that a certain tolerance ¢ (e.g, € =
sqrt (.Machine$double.eps) = 1.49 x 10~ with the R software). In view

of (5) and (9), test statistics relying on estimators 2: of the {2}-inverses

Eg’“ introduced in Section 4.1 can be proposed. For k € {1,...,m} fixed,
they are defined by:

Q=i B," (11)

At the nominal level «, the null hypothesis Hy is rejected when @)k

X3(1 — a). The test statistics (10) and (11) constitute interesting alterna-
tives to BPLypnoy; they do not require the use of Imhof’s algorithm. How-
ever, the range of application of the test statistics relying on {2}-inverses is
more limited because the test statistic @,,* presumes the assumption that
rank(X, ) > k. The range of application of the Q;*-test decreases as k
increases from one to m. The test obtained with k¥ = m, which is actually
that based on Q= = QINV that is the test statistic proposed by Li (1992),
is the most restrictive one, in the sense that the invertibility of X, is re-
quired. On the other hand, the set of the alternatives for which the @, *-test
is consistent should increase with k: under appropriate regularity conditions
n='Qrt — A ! (pl, v1)? with probability one as n — oo. Thus, the Q' -test
should not have much power against alternatives such that p) ,v1 = 0. The
next section provides an empirical comparison of the different test statistics.

5 Numerical illustrations

Here, we compare empirically the following portmanteau tests: BPLymnof

and the liberal test statistic BPsz ~described in Section 3.1, BPLX2 -

advocated in Section 3.2, and the test statistics QMP (with e = 1.49 x 10~ )
and Q;* introduced in Section 4.2; QINV = Q- m of Section 3.3 is included in
our experiments. We concentrate on the case m = 4, which leads to comparing
eight tests. In a first set of Monte Carlo experiments, N = 1000 independent
trajectories of the AR(1)-ARCH(1) model (7) are simulated. The lengths of
the trajectories are n = 200, 2000. The code is written in R and FORTRAN.
Table 1 displays the empirical sizes. For the nominal level a = 5%, the
empirical size over the N = 1000 independent replications should belong to
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Table 1. Empirical size of portmanteau tests: relative frequencies (in %) of rejection
of the AR(1)-ARCH(1) model (7), when the DGP follows the same model. The
number of replications is N = 1000.

Model n a BPL>  BPLp Q' Q;* Q;* Q* Qi'" BPLpnunos

Xm—s

1% 1.0 7.3 05 0.6 1.0 1.0 1.2 1.0
I 200 5% 4.2 24.9 41 2.7 40 2.9 3.7 3.7
10% 8.3 40.1 83 82 8.0 4.8 6.8 7.9
1% 1.0 9.1 1.2 1.0 10 1.3 1.2 1.0
I 2000 5% 5.9 26.9 53 48 59 36 6.3 5.9
10%  10.9 44.1 9.1 96 109 7.2 9.9 10.7
1% 1.2 9.6 06 06 05 09 09 0.8
I 200 5% 5.1 31.3 43 3.4 3.1 3.3 3.3 3.3
10%  11.7 48.7 87 7.8 6.9 6.8 6.8 6.2
1% 1.6 16.0 08 12 09 08 0.8 0.8
II 2000 5% 9.8 38.9 52 50 51 50 5.0 4.5
10%  18.0 58.9 10.7 105 10.4 12.1 12.1  12.0

I: Model (7) with ap =0, wo =1 and ap =0
IT: Model (7) with ap = 0.95, wo =1 and ap = 0.55

Table 2. Empirical power of portmanteau tests: relative frequencies (in %) of rejec-
tion of the AR(1)-ARCH(1) model (7), when the DGP follows an AR(3)-ARCH(1)
model (model IIT) or an AR(1)-ARCH(3) model (model IV).

Model ~ n & Q7' Q17 Q" Q' Q"  BPLpunos
1% 20.0 31.2 38.4 29.2 32.2 38.3
111 200 5% 36.1 53.2 65.3 52.6 57.0 65.8
10% 46.3 64.2 75.4 63.4 67.7 75.3
1% 35.6 61.0 80.8 714 73.9 81.2
II1 400 5% 49.5 73.4 92.0 84.6 86.0 91.9
10% 58.7 79.3 95.4 88.7 89.2 95.2
1% 1.5 3.5 4.7 34 4.3 4.4
v 200 5% 6.1 8.8 10.0 8.4 9.5 8.8
10% 11.1 14.1 16.5 11.3 14.9 14.9
1% 2.7 5.8 7.6 6.4 7.7 7.4
v 400 5% 8.3 13.5 15.3 11.3 13.8 14.5
10% 13.9 20.9 22.7 16.2 19.9 214

IIL: Y; = 0.2Yi_3 + ¢; where ¢ = \/1 +0.2¢2_

IV: Vi = 0.2Y; 1 + & where €2 = /1 + 0.5¢2_,m:

the interval [3.6%, 6.4%] with probability 95%. When the relative rejection
frequencies are outside the 95% significant limits, they are displayed in bold
in Table 1. When the relative rejection frequencies are outside the 99% signif-
icant limits [3.2%, 6.9%)], they are underlined. It can be seen that: 1) the re-
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jection frequency of BPL,> is definitely too high, 2) as expected, BPL,»

works well when ag = 0 and oy = 0, but not when ag # 0 or ag # 0, 3) the
empirical levels of Q;* = QINV are far from the nominal levels for Model I,
which is explained by the singularity of 3, , 4) the errors of the first kind
of the test statistics QMF, Q7*, k < 4, and BPLyp0y are well controlled
when n is large. Table 2 compares the empirical powers, excluding BPL 2

and BPL,» I which display unsatisfactory empirical levels. Note that mis-

specification of the conditional mean (model IIT) seems easier to detect than
misspecification of the conditional variance (model IV). As expected, the
power of @,* is function of k. From Table 2, Q;® and BPLj,n0r are the
most powerful portmanteau test statistics, at least in our experiments. Inter-
estingly, QM T offers an empirical power very close to the one of BPLmhoy,
and slightly better than the one of ), *. In general, BPLyy,n,¢ seems to be
advisable in view of its good theoretical and finite sample performance, but
given its computational simplicity, QM¥ appears to be a close competitor.
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