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t. A 
lass of univariate time series models is 
onsidered, whi
h allowsgeneral spe
i�
ations for the 
onditional mean and 
onditional varian
e fun
tions.After deriving the asymptoti
 distributions of the residual auto
orrelations based onthe standardized residuals, portmanteau test statisti
s are studied. If the asymptoti

ovarian
e of a ve
tor of �xed length of residual auto
orrelations is non singular,portmanteau test statisti
s 
ould be de�ned, following the approa
h advo
atedby Li (1992). However, assuming the invertibility of the asymptoti
 
ovarian
e ofthe residual auto
orrelations may be restri
tive, and, alternatively, the popularBox-Pier
e-Ljung test statisti
 may be re
ommended. In our framework, that teststatisti
 
onverges in distribution to a weighted sum of 
hi-square variables, andthe 
riti
al values 
an be found using Imhof's (1961) algorithm. However, Imhof'salgorithm may be time 
onsuming. In view of this, we investigate in this arti
le theuse of generalized inverses and f2g-inverses, in order to propose new test statisti
swith asymptoti
 
hi-square distributions, avoiding the need to implement Imhof'salgorithm. In a small simulation study, the following test statisti
s are 
ompared:Box-Pier
e-Ljung test statisti
, the test statisti
 based on the proposal of Li (1992),and the new test statisti
s relying on generalized inverses and f2g-inverses.Keywords: Conditional heteros
edasti
ity, diagnosti
 
he
king, generalizedinverses, portmanteau test statisti
s, residual auto
orrelations1 Introdu
tionLet fYtg be a stationary sto
hasti
 pro
ess. We 
onsider the following uni-variate time series model:Yt = m�0(Yt�1; Yt�2; : : : ) + ��0(Yt�1; Yt�2; : : : )�t; (1)where �0 denotes a s dimensional ve
tor of unknown parameters belongingto a subset �, where � � Rs . The error pro
ess f�tg is an independent andidenti
ally distributed (iid) sequen
e of random variables with mean zero andunit varian
e. It is assumed that the random variable �t is independent of
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q, C.fYt�i; i > 0g. The nonlinear model (1) represents a very general 
lass of timeseries models with a general spe
i�
ation for the error term. It in
ludes the
lassi
al autoregressive moving-average (ARMA) time series model, with pos-sible [general℄ 
onditional heteroskedasti
ity ([G℄ARCH) in the error pro
ess,and also nonlinear models, su
h as threshold autoregressive models (TAR),self-ex
iting TAR models (SETAR), and smooth versions of TAR models.Tong (1990) and Granger and Ter�asvirta (1993) provide surveys of univari-ate nonlinear models.Let Yt, t = 1; : : : ; n be a �nite realization of the sto
hasti
 pro
ess fYtg.An important pra
ti
al aspe
t is to validate an adjusted model su
h as (1),using estimation pro
edures su
h as quasi-maximum likelihood (QML) andnonlinear least squares (NLS) methods (the latter being obtained by assum-ing a 
onstant 
onditional varian
e). Klimko and Nelson (1978) investigatedgeneral properties of 
onditional least squares estimators in univariate non-linear time series. See also Pots
her and Pru
ha (1997) and Tanigu
hi andKakizawa (2000), amongst others.Residual auto
orrelations have been found useful for 
he
king model ad-equa
y of many time series models (see, e.g., Li (2004)). In view of this fa
t,we �rst derive the asymptoti
 distributions of the residual auto
orrelationsbased on the standardized residuals. As an appli
ation of that result, port-manteau test statisti
s are studied. If the asymptoti
 
ovarian
e of a ve
torof �xed length of residual auto
orrelations is non singular, portmanteau teststatisti
s 
ould be de�ned, following the approa
h advo
ated by Li (1992).However, assuming the invertibility of the asymptoti
 
ovarian
e of the resid-ual auto
orrelations may be somewhat restri
tive. For example, in validatingan ARMA model with an iid error term, it is well-known that the asymptoti

ovarian
e matrix of a ve
tor of �xed length of residual auto
orrelations isapproximatively idempotent, with rank n� p� q, where p and q 
orrespondto the autoregressive and moving average orders, respe
tively. On the otherhand, if model (1) represents a nonlinear time series model, su
h as the TARmodel 
onsidered in Li (1992), then, under some 
onditions, the asymptoti

ovarian
e matrix is expe
ted to be non-singular. See also Li (2004, pp. 79-80).For a given model, the pre
ise 
onditions whi
h guarantee the invertibility ofthe asymptoti
 
ovarian
e matrix may be hard to obtain. Alternatively, thepopular Box-Pier
e-Ljung test statisti
 may be re
ommended (see Li (2004),amongst others). In our framework, this test statisti
 
onverges in distribu-tion to a weighted sum of 
hi-square variables, where, in pra
ti
e, the weightsare determined with the data (see Fran
q, Roy and Zako��an (2005) for generalresults in the 
ontext of ARMA models with weak errors). Interestingly, therange of appli
ability of Box-Pier
e-Ljung test statisti
 appears to be moregeneral, in the sense that if the asymptoti
 
ovarian
e matrix is non-singular,then all weights are stri
kly positive. However, 
ontrary to the test pro
edureof Li (1992, 2004), the Box-Pier
e-Ljung test statisti
 is still appropriate inlinear time series models: for an AR(1) time series model, say, one weight
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hi-square variables is identi
ally equal to zero, andthe others weights are stri
tly positives. In pra
ti
e, the 
riti
al values of theBox-Pier
e-Ljung test statisti
 
an be found using Imhof's algorithm. Eventoday, it may be still time 
onsuming to implement this algorithm, sin
e,to the best of our knowledge, Imhof's algorithm is not a
tually available inpopular softwares su
h as S-PLUS or R.Sin
e the asymptoti
 
ovarian
e matrix of a ve
tor of �xed length of resid-ual auto
orrelations may be essentially singular in linear time series models,and, under 
ertain assumptions, invertible in non-linear time series models,we investigate here the use of generalized inverses, su
h as the Moore-Penroseinverse, and also of f2g-inverses of that 
ovarian
e matrix. This leads usto propose new portmanteau test statisti
s with asymptoti
 
hi-square dis-tributions. These new test statisti
s avoid the need to implement Imhof'salgorithm. In a small simulation study, the following test statisti
s are 
om-pared with respe
t to level and power: Box-Pier
e-Ljung test statisti
, thetest statisti
 based on the proposal of Li (1992), a new test statisti
 relyingon the Moore-Penrose inverse, and several new proposals relying on f2g-inverses. The rest of the paper is organized as follows. In Se
tion 2, we derivethe asymptoti
 distribution of the residual auto
orrelations. Classi
al port-manteau test statisti
s are dis
ussed in Se
tion 3. In Se
tion 4, modi�ed teststatisti
s are presented. A small simulation study is 
ondu
ted in Se
tion 5.2 Asymptoti
 distribution of the residualauto
orrelationsConsider model (1). The �rst and se
ond 
onditional moments are given by:mt(�0) := m�0(Yt�1; Yt�2; : : : ) = E(Yt j Yt�1; Yt�2; : : : );�2t (�0) := �2�0(Yt�1; Yt�2; : : : ) = Var(Yt j Yt�1; Yt�2; : : : );respe
tively. Given the time series data Y1; : : : ; Yn, and the initial valuesY0 = y0; Y�1 = y�1; : : : , at any � 2 � the 
onditional moments mt(�) and�2t (�) 
an be approximated by the measurable fun
tions de�ned by ~mt(�) =m�(Yt�1; : : : ; Y1; y0; : : : ) and ~�2t (�) = �2�(Yt�1; : : : ; Y1; y0; : : : ), respe
tively.A natural 
hoi
e for the initial values is to spe
ify Yi = 0 for all i � 0. AQML estimator of �0 is de�ned as any measurable solution �̂n of�̂n = arg inf�2� ~Qn(�);where ~Qn(�) = n�1Pnt=1 ~̀t and ~̀t = ~̀t(�) = (Yt � ~mt)2=~�2t + log ~�2t . It 
anbe shown that the QML estimator is 
onsistent and asymptoti
ally normalunder Assumption A.Assumption A: (i) � represents a 
ompa
t set and the fun
tions � !~mt(�) and � ! ~�2t (�) > 0 are 
ontinuous; (ii) fYtg 
orresponds to a non an-ti
ipative stri
tly stationary and ergodi
 solution of (1); (iii) E log� �2t (�) <
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q, C.1 for all � 2 �; and E log+ �2t (�0) < 1; (iv) sup�2� ���`t � ~̀t��� ! 0a:s: as t ! 1, where `t(�) = (Yt �mt)2=�2t + log�2t ; (v) if � 6= �0then mt(�) 6= mt(�0) or �2t (�) 6= �2t (�0) with non zero probability;(vi) �0 belongs to the interior Æ� of �; (vii) � ! mt(�) and � ! �t(�) admit
ontinuous third order derivatives, andE sup�2� ���� �3`t(�)��i��j��k ���� <1 8i; j; k:(viii) The moments �i = E�it, i � 4, and the information matri
es I =E[f�`t(�0)=��gf�`t(�0)=��0g℄ and J = Ef�2`t(�0)=����0g exist. Further-more, I and J are supposed to be non singular.Write a 
= b when a = b+ 
. Under Assumption A:pn(�̂n � �0) oP (1)= �J�1 1pn nXt=1Zt L! N �0;��̂n� (2)as n!1, where ��̂n := J�1IJ�1 andZt = �2 �t�t �mt(�0)�� + �1� �2t 	 1�2t ��2t (�0)�� :Following the 
urrent pra
ti
e, the information matri
es I and J are 
onsis-tently estimated by their empiri
al 
ounterparts, that is by the formula Î =n�1Pnt=1f� ~̀t(�̂n)=��gf� ~̀t(�̂n)=��0g and Ĵ = n�1Pnt=1 �2 ~̀t(�̂n)=����0,respe
tively.De�ne the following standardized residuals:�̂t = Yt � ~mt(�̂n)~�t(�̂n) ; t = 1; : : : ; n:Portmanteau test statisti
s based on the auto
orrelations of the residualsare routinely performed for model adequa
y 
he
king. In order to derive theasymptoti
 distribution of the residual auto
orrelations, some additional no-tations are needed. Let�t(�) = Yt �mt(�)�t(�) ; ~�t(�) = Yt � ~mt(�)~�t(�) ;so that �t = �t(�0) and �̂t = ~�t(�̂n). For any �xed integer m � 1, let
m = (
(1); : : : ; 
(m))0 ; �m = (�(1); : : : ; �(m))0 ;where, for ` � 0, 
(`) = 1n n�X̀t=1 �t�t+` and �(`) = 
(`)
(0) :
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m oP (1)= n�1Pnt=1 � t� 0t where � t = �t�t�1:t�m and �t�1:t�m =(�t�1; : : : ; �t�m)0. In view of (2), the 
entral limit theorem applied to the mar-tingale di�eren
e �(Z 0t;� 0t)0;�(�u; u � t)	 implies the following asymptoti
distribution: pn� �̂n � �0
m � L! N �0;� ��̂n ��̂n�m� 0̂�n�m Im �� ; (3)where Im denotes the identity matrix of order m and:��̂n�m = �J�1EZt� 0t;= 2J�1E 1�t �mt(�0)�� �0t�1:t�m + J�1�3E 1�2t ��2t (�0)�� �0t�1:t�m:We now turn to the residual auto
orrelation fun
tion �̂(�) obtained by repla
-ing �t by �̂t in �(�). Similarly, de�ne the fun
tion 
̂(�) and the ve
tors 
̂m and�̂m. A Taylor expansion of the fun
tion � 7! n�1Pn�`t=1 �t(�)�t+`(�) around�̂n and �0 gives 
̂(`) oP (1)= 
(`) + 
0̀ (�̂n � �0), where
` = E�t�` ��t�� (�0) = �E �t�`�t(�0) ��mt�� (�0) + �t2�t(�0) ��2t�� (�0)�= �E �t�`�t(�0) �mt�� (�0):Using (3) and the notation Cm = (
1 
2 � � � 
m), it follows that:pn
̂m L! N �0;�
̂m	as n ! 1, where �
̂m = Im + C0m� �̂nCm + C0m��̂n�m + � 0̂�n�mCm:Some simpli�
ations are possible. First, we note that ��̂n�m = �2J�1Cm+�3J�1Dm, where Dm = (d1 d2 � � � dm) and d` = E�t�`��2t ��2t (�0)=��.Thus, the asymptoti
 
ovarian
e matrix 
an be written as:�
̂m = Im +C 0mJ�1IJ�1Cm � 4C 0mJ�1Cm+�3 �C0mJ�1Dm +D0mJ�1Cm� : (4)Sin
e 
̂(0) = 1 + oP (1), the asymptoti
 distribution of the residual auto
or-relations follows easily: pn�̂m L! N �0;��̂m	 ; (5)where ��̂m = �
̂m . One 
an de�ne empiri
al estimates Ĉm and D̂m byrepla
ing 
` and d` in Cm and Dm by
̂` = � 1n nXt=`+1 �̂t�`�t(�̂n) �mt�� (�̂n) and d̂` = 1n nXt=`+1 �̂t�`�2t (�̂n) ��2t�� (�̂n):We then obtain an estimator �̂�̂m of ��̂m by repla
ing �3 and the matri
esI , J , Cm and Dm by their empiri
al 
ounterparts in (4).
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q, C.3 Classi
al portmanteau tests3.1 Box-Pier
e-Ljung test statisti
sFor 
he
king the adequa
y of an ARMA(p; q) model, it is 
ustomary to employthe so-
alled portmanteau tests, su
h as the Box-Pier
e-Ljung test statisti
QBPLm = n(n + 2)Pmi=1 �̂2(i)=(n � i). When diagnosing ARMA models, thenull hypothesis of an ARMA(p; q) model is reje
ted at the nominal level �when QBPLm > �2m�(p+q)(1� �), where m > p+ q and �2̀(1� �) denotes the(1� �)-quantile of a �2 distribution with ` degrees of freedom.More generally, when the 
onditional mean m�0(�) and the 
onditionalvarian
e ��0(�) are well spe
i�ed in (1), the residual auto
orrelations �̂(h)are expe
ted to be 
lose to zero for all h 6= 0. Therefore, it is natural to reje
tthe null hypothesis H0 that the data generating pro
ess (DGP) is the model(1) when kpn�̂mk2 is larger than a 
ertain 
riti
al value. More pre
isely, (5)shows that, under the null hypothesis H0 of model adequa
y:QBPLm L! mXi=1 �iZ2i as n!1; (6)where Z1; : : : ;Zm 
orrespond to independent N (0; 1) random variables and�1; : : : ; �m represent the eigenvalues of ��̂m . For an ARMA(p; q) model withiid errors, it is shown in M
Leod (1978) that the p + q smallest eigenvalues�i are 
lose to zero and that the other eigenvalues are equal to one. Thus, weobtain a �2m�s approximation, where s = p + q is the number of estimatedparameters, for the asymptoti
 distribution of QBPLm when the DGP is anARMA (p; q) model with iid errors.When the errors are un
orrelated but not independent, and when theARMA 
oeÆ
ients are estimated by least squares, it is shown in Fran
q,Roy and Zako��an (2005) that the asymptoti
 distribution of QBPLm is poorlyapproximated by the 
hi-square distribution �2m�s.In this paper, the framework is di�erent from the one 
onsidered inFran
q, Roy and Zako��an (2005): here, a more general model is permittedthan the 
lassi
al ARMA model. However, in the present set-up, the errorpro
ess f�tg is assumed to be iid and the error term in (1) represents amartingale di�eren
e sequen
e.It is 
lear that all the eigenvalues of the matrix ��̂m are positive andthat, when �3 = 0 and m > s, at least m � s of its eigenvalues are equalto one. When �3 = 0 and m > s, we then have limn!1 P (QBPLm > x) �P (�2m�s > x): Consequently, the test statisti
 de�ned by the 
riti
al regionfQBPLm > �2m�s(1� �)g is expe
ted to be liberal at the nominal level �. Inthe sequel, this test statisti
 will be referred to as the �2m�s-based (BPL�2m�s)Box-Pier
e-Ljung portmanteau test statisti
.It is possible to evaluate the distribution of the Gaussian quadrati
 formin (6) by means of Imhof's algorithm. Following Fran
q, Roy and Zako��an
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an thus propose a modi�ed portmanteau test statisti
 based onthe following steps: 1) 
ompute the eigenvalues �̂1; : : : ; �̂m of a 
onsistentestimator �̂�̂m of ��̂m , 2) evaluate the (1 � �)-quantile 
�(�̂1; : : : ; �̂m) ofPmi=1 �̂iZ2i using Imhof's algorithm, 3) reje
t the null that the DGP is (1)when n�̂0m�̂m � 
�(�̂1; : : : ; �̂m). For further referen
e, this test statisti
 willbe referred to as the Imhof-based (BPLImhof ) Box-Pier
e-Ljung portmanteautest statisti
. Compared to the BPL�2m�s method, the BPLImhof version isasymptoti
ally more a

urate (sin
e the �2m�s distribution is only a 
rudeapproximation of the true asymptoti
 distribution), but the BPLImhof teststatisti
 is relatively more involved to implement sin
e an estimator of ��̂mis required, and Imhof's algorithm must be implemented, whi
h is relatively
ompli
ated and may be time 
onsuming. Se
tion 4 below proposes alterna-tives to BPL�2m�s and BPLImhof portmanteau test statisti
s.3.2 An exampleThe autoregressive (AR) and the autoregressive 
onditional heteros
edasti
(ARCH) models are among the most widely used models for the 
onditionalmean and 
onditional varian
e. We 
ombine the simplest versions of thesetwo models to obtain the AR(1)-ARCH(1) model:�Yt = a0Yt�1 + �t;�t = �t�t; �2t = !0 + �0�2t�1: (7)Under very general assumptions, Assumption A holds true (see Fran
q andZako��an (2004), who dis
uss Assumption A in the framework of ARMA-GARCH models). The unknown parameter is �0 = (a0; !0; �0). In order tobe able to 
ompute expli
itly the information matri
es I and J , we assume�0 = 0. We then have:�`t(�0)�� = �2 �tp!0 0�Yt�100 1A+ (1� �2t ) 1!0 0� 01�2t�11Aand �2`t(�0)����0 = 0BBB� 2Y 2t�1!0 2�tYt�1!3=20 2�tYt�1�2t�1!3=20 + 2(�2t�1)�t�1Yt�2!0� 2�2t�1!20 (2�2t�1)�2t�1!20� � (2�2t�1)�4t�1!20 1CCCA :Thus we have: I = Var �`t(�0)�� = 0B� 41�a20 0 2�230 �4�1!20 �4�1!02�23 �4�1!0 �4(�4 � 1)1CA ;
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q, C.J = E�2`t(�0)����0 = 0B� 21�a20 0 00 1!20 1!00 1!0 �41CAand ��̂n = 0BB� 1� a20 �!0�23(1�a20)�4�1 �23(1�a20)�4�1�!0�23(1�a20)�4�1 !20�4 �!0�23(1�a20)�4�1 �!0 1 1CCA :Note that, when �t � N (0; 1), we have I = 2J and ��̂n = 2J�1. We alsohave Cm = ��1 a0 : : : am�1002�m � ; Dm = � 02�m�3 00m�1� :Note that D0mJ�1Cm = 0, J�1Cm = Cm(1�a20)=2 and I Cm = Cm4=(1�a20) + 2�33C�m, where C�m is obtained by permuting the rows 1 and 3 of Cm,so that C0mC�m = 0. It follows that�
̂m = Im � (1� a20)C 0mCm:When m is large or a0 is 
lose to 0, �
̂m ' Im � C 0m �CmC 0m��1Cm is
lose to a proje
tion matrix with m � 1 eigenvalues equal to 1, and oneeigenvalue equals to 0. Therefore, in this parti
ular situation where �0 = 0,the asymptoti
 distribution of the Box-Pier
e-Ljung test statisti
s 
an beapproximated by a �2m�1 distribution. Note that this is not the approximationusually employed in the ARMA 
ase, namely the �2m�s where s is the numberof estimated parameters.3.3 Test statisti
 based on a proposal of Li (1992)Assume ��̂m to be non-singular. A natural approa
h 
onsidered by Li (1992,2004) in non-linear time series with independent errors 
onsists to de�ne thefollowing test statisti
: QINVm = n�̂0m�̂�1�̂m �̂m; (8)whi
h follows asymptoti
ally a �2m distribution under the null hypothesisH0 that the DGP satis�es (1), provided �̂�̂m 
orresponds to a 
onsistentestimator of the nonsingular matrix ��̂m .However, as suggested by the example of the pre
eding se
tion, the matrix��̂m is not invertible in the ARMA 
ase and 
onditions whi
h guaranty theinvertibility of that asymptoti
 matrix seem diÆ
ult to �nd. If ��̂m is sin-gular, this invalidates the asymptoti
 �2m distribution. In pra
ti
e, numeri
alinstability is expe
ted in the 
omputation of QINVm when ��̂m is singular.In the next se
tion, we investigate the use of several generalized inversesof the matrix �̂�̂m . Basi
 results on generalized inverses are reviewed in thenext se
tion.
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king Time Series Models 94 Modi�ed portmanteau tests using generalizedinverses and f2g-inverses4.1 Generalized inverses and f2g-inversesA generalized inverse (g-inverse) of a matrix � is a matrix ~� satisfying� ~�� = �. Usually this 
ondition is the �rst of the four 
onditions de�n-ing the (unique) Moore-Penrose inverse of �, and ~� is 
alled a f1g-inverse(Getson and Hsuan (1988)). On the other hand, a f2g-inverse of � is anymatrix �� satisfying the se
ond relation de�ning the Moore-Penrose in-verse of �, that is ����� = ��. When both requirements are satis�ed,the resulting matrix is sometimes 
alled a re
exive g-inverse or a f1; 2g-inverse (Rao (1973, p. 25)). Let � 6= 0 be a positive semide�nite sym-metri
 matrix of order m, with eigenvalues �1 � �2 � � � � � �m � 0.The spe
tral de
omposition of � is � = P�P 0 = Pmi=1 �iviv0i, where� = diag(�1; : : : ; �m) and the 
olumns v1; : : : ;vm of the matrix P 
onstitutean orthonormal basis of Rm . If �m�s > 0 and �m�s+1 = � � � = �m = 0,then the matrix �� = P��P 0 where �� = diag(��11 ; : : : ; ��1m�s;00s) isthe Moore-Penrose inverse (or pseudo-inverse) of �. For k = 1; : : : ;m � s,let the matrix ��k = P��kP 0 where ��k = diag(��11 ; : : : ; ��1k ;00m�k):The matrix ��k is always a f2g-inverse, but this is not a g-inverse of �when k < m � s. Now suppose that Z � N (0m;�). Then, using nat-ural notations, we have ��k1=2P 0Z � N �0m; diag(10k;00m�k)	 and thusZ 0��kZ = k��k1=2P 0Zk2 � �2k. Now suppose that Zn L! N (0m;�) and�n ! � in probability, as n ! 1. For k = 1; : : : ; rank(�), the matrix��k exists and 
an be approximated by ��kn , for all large enough n (Note,however, that the matri
es ��k and ��kn are not unique, be
ause they de-pend on the parti
ular 
hoi
e of the orthonormal basis in the de
ompositions� = P�P 0 and �n = P n�nP 0n). Using the 
ontinuity property of theeigenvalues and eigenproje
tions (see Tyler (1981)), it 
an be shown that:Z 0n��kn Zn L! �2k; 8k � rank(�): (9)The 
ondition k � rank(�) appears to be essential: for example, take:�n = P n�nP 0n; �n = � 1 00 1n � ; P n = 0� q 1n �qn�1nqn�1n q 1n 1A ;and Zn � N ��00� ;� 
n 00 1�� ; 
 � 0:Then Zn L! N (02;�) and �n ! � with � = diag(0; 1), but Z 0n��2n Zn �(
+ 
n2 � 
n )Z21 + (2� 1n )Z22 L6! �22: In the next subse
tion, test statisti
s willbe 
onstru
ted, relying on an appropriate estimator of the Moore-Penroseinverse, and on estimators of the f2g-inverses 
onsidered in this se
tion.
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q, C.4.2 Generalized portmanteau test statisti
sConsider a 
onsistent estimator �̂�̂m of the matrix ��̂m . Sin
e ��̂m in (5)may be singular, one 
an propose:QMPm = n�̂0m�̂�̂�m �̂m; (10)where �̂�̂�m is an estimator of the Moore-Penrose inverse of ��̂m . At thenominal level �, the null hypothesis H0 that the DGP follows a nonlinearmodel of the form (1) is reje
ted when QMPm > �2kn(1 � �), with kn thenumber of eigenvalues of �̂�̂m larger that a 
ertain toleran
e � (e.g, � =sqrt(.Ma
hine$double.eps) = 1:49 � 10�8 with the R software). In viewof (5) and (9), test statisti
s relying on estimators �̂�k�̂m of the f2g-inverses��k�̂m introdu
ed in Se
tion 4.1 
an be proposed. For k 2 f1; : : : ;mg �xed,they are de�ned by: Q�km = n�̂0m�̂�k�̂m �̂m: (11)At the nominal level �, the null hypothesis H0 is reje
ted when Q�km >�2k(1 � �). The test statisti
s (10) and (11) 
onstitute interesting alterna-tives to BPLImhof ; they do not require the use of Imhof's algorithm. How-ever, the range of appli
ation of the test statisti
s relying on f2g-inverses ismore limited be
ause the test statisti
 Q�km presumes the assumption thatrank(��̂m) � k. The range of appli
ation of the Q�km -test de
reases as kin
reases from one to m. The test obtained with k = m, whi
h is a
tuallythat based on Q�mm = QINVm , that is the test statisti
 proposed by Li (1992),is the most restri
tive one, in the sense that the invertibility of ��̂m is re-quired. On the other hand, the set of the alternatives for whi
h the Q�km -testis 
onsistent should in
rease with k: under appropriate regularity 
onditionsn�1Q�1m ! ��11 (�0mv1)2 with probability one as n!1. Thus, the Q�1m -testshould not have mu
h power against alternatives su
h that �0mv1 = 0. Thenext se
tion provides an empiri
al 
omparison of the di�erent test statisti
s.5 Numeri
al illustrationsHere, we 
ompare empiri
ally the following portmanteau tests: BPLImhofand the liberal test statisti
 BPL�2m�s des
ribed in Se
tion 3.1, BPL�2m�1advo
ated in Se
tion 3.2, and the test statisti
s QMPm (with � = 1:49� 10�8)and Q�km introdu
ed in Se
tion 4.2; QINVm = Q�mm of Se
tion 3.3 is in
luded inour experiments. We 
on
entrate on the 
asem = 4, whi
h leads to 
omparingeight tests. In a �rst set of Monte Carlo experiments, N = 1000 independenttraje
tories of the AR(1)-ARCH(1) model (7) are simulated. The lengths ofthe traje
tories are n = 200; 2000. The 
ode is written in R and FORTRAN.Table 1 displays the empiri
al sizes. For the nominal level � = 5%, theempiri
al size over the N = 1000 independent repli
ations should belong to
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al size of portmanteau tests: relative frequen
ies (in %) of reje
tionof the AR(1)-ARCH(1) model (7), when the DGP follows the same model. Thenumber of repli
ations is N = 1000.Model n � BPL�2m�1 BPL�2m�s Q�14 Q�24 Q�34 Q�44 QMP4 BPLImhof1% 1.0 7.3 0.5 0.6 1.0 1.0 1.2 1.0I 200 5% 4.2 24.9 4.1 2.7 4.0 2.9 3.7 3.710% 8.3 40.1 8.3 8.2 8.0 4.8 6.8 7.91% 1.0 9.1 1.2 1.0 1.0 1.3 1.2 1.0I 2000 5% 5.9 26.9 5.3 4.8 5.9 3.6 6.3 5.910% 10.9 44.1 9.1 9.6 10.9 7.2 9.9 10.71% 1.2 9.6 0.6 0.6 0.5 0.9 0.9 0.8II 200 5% 5.1 31.3 4.3 3.4 3.1 3.3 3.3 3.310% 11.7 48.7 8.7 7.8 6.9 6.8 6.8 6.21% 1.6 16.0 0.8 1.2 0.9 0.8 0.8 0.8II 2000 5% 9.8 38.9 5.2 5.0 5.1 5.0 5.0 4.510% 18.0 58.9 10.7 10.5 10.4 12.1 12.1 12.0I: Model (7) with a0 = 0, !0 = 1 and �0 = 0II: Model (7) with a0 = 0:95, !0 = 1 and �0 = 0:55Table 2. Empiri
al power of portmanteau tests: relative frequen
ies (in %) of reje
-tion of the AR(1)-ARCH(1) model (7), when the DGP follows an AR(3)-ARCH(1)model (model III) or an AR(1)-ARCH(3) model (model IV).Model n � Q�14 Q�24 Q�34 Q�44 QMP4 BPLImhof1% 20.0 31.2 38.4 29.2 32.2 38.3III 200 5% 36.1 53.2 65.3 52.6 57.0 65.810% 46.3 64.2 75.4 63.4 67.7 75.31% 35.6 61.0 80.8 71.4 73.9 81.2III 400 5% 49.5 73.4 92.0 84.6 86.0 91.910% 58.7 79.3 95.4 88.7 89.2 95.21% 1.5 3.5 4.7 3.4 4.3 4.4IV 200 5% 6.1 8.8 10.0 8.4 9.5 8.810% 11.1 14.1 16.5 11.3 14.9 14.91% 2.7 5.8 7.6 6.4 7.7 7.4IV 400 5% 8.3 13.5 15.3 11.3 13.8 14.510% 13.9 20.9 22.7 16.2 19.9 21.4III: Yt = 0:2Yt�3 + �t where �2t =q1 + 0:2�2t�1�tIV: Yt = 0:2Yt�1 + �t where �2t =q1 + 0:5�2t�3�tthe interval [3.6%, 6.4%℄ with probability 95%. When the relative reje
tionfrequen
ies are outside the 95% signi�
ant limits, they are displayed in boldin Table 1. When the relative reje
tion frequen
ies are outside the 99% signif-i
ant limits [3.2%, 6.9%℄, they are underlined. It 
an be seen that: 1) the re-
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tion frequen
y of BPL�2m�s is de�nitely too high, 2) as expe
ted, BPL�2m�1works well when a0 = 0 and �0 = 0, but not when a0 6= 0 or �0 6= 0, 3) theempiri
al levels of Q�44 = QINV4 are far from the nominal levels for Model I,whi
h is explained by the singularity of ��m , 4) the errors of the �rst kindof the test statisti
s QMP4 , Q�k4 , k < 4, and BPLImhof are well 
ontrolledwhen n is large. Table 2 
ompares the empiri
al powers, ex
luding BPL�2m�sand BPL�2m�1 , whi
h display unsatisfa
tory empiri
al levels. Note that mis-spe
i�
ation of the 
onditional mean (model III) seems easier to dete
t thanmisspe
i�
ation of the 
onditional varian
e (model IV). As expe
ted, thepower of Q�km is fun
tion of k. From Table 2, Q�34 and BPLImhof are themost powerful portmanteau test statisti
s, at least in our experiments. Inter-estingly, QMP4 o�ers an empiri
al power very 
lose to the one of BPLImhof ,and slightly better than the one of Q�44 . In general, BPLImhof seems to beadvisable in view of its good theoreti
al and �nite sample performan
e, butgiven its 
omputational simpli
ity, QMP4 appears to be a 
lose 
ompetitor.Referen
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