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2 Duhesne, P. and Franq, C.fYt�i; i > 0g. The nonlinear model (1) represents a very general lass of timeseries models with a general spei�ation for the error term. It inludes thelassial autoregressive moving-average (ARMA) time series model, with pos-sible [general℄ onditional heteroskedastiity ([G℄ARCH) in the error proess,and also nonlinear models, suh as threshold autoregressive models (TAR),self-exiting TAR models (SETAR), and smooth versions of TAR models.Tong (1990) and Granger and Ter�asvirta (1993) provide surveys of univari-ate nonlinear models.Let Yt, t = 1; : : : ; n be a �nite realization of the stohasti proess fYtg.An important pratial aspet is to validate an adjusted model suh as (1),using estimation proedures suh as quasi-maximum likelihood (QML) andnonlinear least squares (NLS) methods (the latter being obtained by assum-ing a onstant onditional variane). Klimko and Nelson (1978) investigatedgeneral properties of onditional least squares estimators in univariate non-linear time series. See also Potsher and Pruha (1997) and Taniguhi andKakizawa (2000), amongst others.Residual autoorrelations have been found useful for heking model ad-equay of many time series models (see, e.g., Li (2004)). In view of this fat,we �rst derive the asymptoti distributions of the residual autoorrelationsbased on the standardized residuals. As an appliation of that result, port-manteau test statistis are studied. If the asymptoti ovariane of a vetorof �xed length of residual autoorrelations is non singular, portmanteau teststatistis ould be de�ned, following the approah advoated by Li (1992).However, assuming the invertibility of the asymptoti ovariane of the resid-ual autoorrelations may be somewhat restritive. For example, in validatingan ARMA model with an iid error term, it is well-known that the asymptotiovariane matrix of a vetor of �xed length of residual autoorrelations isapproximatively idempotent, with rank n� p� q, where p and q orrespondto the autoregressive and moving average orders, respetively. On the otherhand, if model (1) represents a nonlinear time series model, suh as the TARmodel onsidered in Li (1992), then, under some onditions, the asymptotiovariane matrix is expeted to be non-singular. See also Li (2004, pp. 79-80).For a given model, the preise onditions whih guarantee the invertibility ofthe asymptoti ovariane matrix may be hard to obtain. Alternatively, thepopular Box-Piere-Ljung test statisti may be reommended (see Li (2004),amongst others). In our framework, this test statisti onverges in distribu-tion to a weighted sum of hi-square variables, where, in pratie, the weightsare determined with the data (see Franq, Roy and Zako��an (2005) for generalresults in the ontext of ARMA models with weak errors). Interestingly, therange of appliability of Box-Piere-Ljung test statisti appears to be moregeneral, in the sense that if the asymptoti ovariane matrix is non-singular,then all weights are strikly positive. However, ontrary to the test proedureof Li (1992, 2004), the Box-Piere-Ljung test statisti is still appropriate inlinear time series models: for an AR(1) time series model, say, one weight



On Diagnosti Cheking Time Series Models 3in the weighted sum of hi-square variables is identially equal to zero, andthe others weights are stritly positives. In pratie, the ritial values of theBox-Piere-Ljung test statisti an be found using Imhof's algorithm. Eventoday, it may be still time onsuming to implement this algorithm, sine,to the best of our knowledge, Imhof's algorithm is not atually available inpopular softwares suh as S-PLUS or R.Sine the asymptoti ovariane matrix of a vetor of �xed length of resid-ual autoorrelations may be essentially singular in linear time series models,and, under ertain assumptions, invertible in non-linear time series models,we investigate here the use of generalized inverses, suh as the Moore-Penroseinverse, and also of f2g-inverses of that ovariane matrix. This leads usto propose new portmanteau test statistis with asymptoti hi-square dis-tributions. These new test statistis avoid the need to implement Imhof'salgorithm. In a small simulation study, the following test statistis are om-pared with respet to level and power: Box-Piere-Ljung test statisti, thetest statisti based on the proposal of Li (1992), a new test statisti relyingon the Moore-Penrose inverse, and several new proposals relying on f2g-inverses. The rest of the paper is organized as follows. In Setion 2, we derivethe asymptoti distribution of the residual autoorrelations. Classial port-manteau test statistis are disussed in Setion 3. In Setion 4, modi�ed teststatistis are presented. A small simulation study is onduted in Setion 5.2 Asymptoti distribution of the residualautoorrelationsConsider model (1). The �rst and seond onditional moments are given by:mt(�0) := m�0(Yt�1; Yt�2; : : : ) = E(Yt j Yt�1; Yt�2; : : : );�2t (�0) := �2�0(Yt�1; Yt�2; : : : ) = Var(Yt j Yt�1; Yt�2; : : : );respetively. Given the time series data Y1; : : : ; Yn, and the initial valuesY0 = y0; Y�1 = y�1; : : : , at any � 2 � the onditional moments mt(�) and�2t (�) an be approximated by the measurable funtions de�ned by ~mt(�) =m�(Yt�1; : : : ; Y1; y0; : : : ) and ~�2t (�) = �2�(Yt�1; : : : ; Y1; y0; : : : ), respetively.A natural hoie for the initial values is to speify Yi = 0 for all i � 0. AQML estimator of �0 is de�ned as any measurable solution �̂n of�̂n = arg inf�2� ~Qn(�);where ~Qn(�) = n�1Pnt=1 ~̀t and ~̀t = ~̀t(�) = (Yt � ~mt)2=~�2t + log ~�2t . It anbe shown that the QML estimator is onsistent and asymptotially normalunder Assumption A.Assumption A: (i) � represents a ompat set and the funtions � !~mt(�) and � ! ~�2t (�) > 0 are ontinuous; (ii) fYtg orresponds to a non an-tiipative stritly stationary and ergodi solution of (1); (iii) E log� �2t (�) <



4 Duhesne, P. and Franq, C.1 for all � 2 �; and E log+ �2t (�0) < 1; (iv) sup�2� ���`t � ~̀t��� ! 0a:s: as t ! 1, where `t(�) = (Yt �mt)2=�2t + log�2t ; (v) if � 6= �0then mt(�) 6= mt(�0) or �2t (�) 6= �2t (�0) with non zero probability;(vi) �0 belongs to the interior Æ� of �; (vii) � ! mt(�) and � ! �t(�) admitontinuous third order derivatives, andE sup�2� ���� �3`t(�)��i��j��k ���� <1 8i; j; k:(viii) The moments �i = E�it, i � 4, and the information matries I =E[f�`t(�0)=��gf�`t(�0)=��0g℄ and J = Ef�2`t(�0)=����0g exist. Further-more, I and J are supposed to be non singular.Write a = b when a = b+ . Under Assumption A:pn(�̂n � �0) oP (1)= �J�1 1pn nXt=1Zt L! N �0;��̂n� (2)as n!1, where ��̂n := J�1IJ�1 andZt = �2 �t�t �mt(�0)�� + �1� �2t 	 1�2t ��2t (�0)�� :Following the urrent pratie, the information matries I and J are onsis-tently estimated by their empirial ounterparts, that is by the formula Î =n�1Pnt=1f� ~̀t(�̂n)=��gf� ~̀t(�̂n)=��0g and Ĵ = n�1Pnt=1 �2 ~̀t(�̂n)=����0,respetively.De�ne the following standardized residuals:�̂t = Yt � ~mt(�̂n)~�t(�̂n) ; t = 1; : : : ; n:Portmanteau test statistis based on the autoorrelations of the residualsare routinely performed for model adequay heking. In order to derive theasymptoti distribution of the residual autoorrelations, some additional no-tations are needed. Let�t(�) = Yt �mt(�)�t(�) ; ~�t(�) = Yt � ~mt(�)~�t(�) ;so that �t = �t(�0) and �̂t = ~�t(�̂n). For any �xed integer m � 1, letm = ((1); : : : ; (m))0 ; �m = (�(1); : : : ; �(m))0 ;where, for ` � 0, (`) = 1n n�X̀t=1 �t�t+` and �(`) = (`)(0) :



On Diagnosti Cheking Time Series Models 5Note that m oP (1)= n�1Pnt=1 � t� 0t where � t = �t�t�1:t�m and �t�1:t�m =(�t�1; : : : ; �t�m)0. In view of (2), the entral limit theorem applied to the mar-tingale di�erene �(Z 0t;� 0t)0;�(�u; u � t)	 implies the following asymptotidistribution: pn� �̂n � �0m � L! N �0;� ��̂n ��̂n�m� 0̂�n�m Im �� ; (3)where Im denotes the identity matrix of order m and:��̂n�m = �J�1EZt� 0t;= 2J�1E 1�t �mt(�0)�� �0t�1:t�m + J�1�3E 1�2t ��2t (�0)�� �0t�1:t�m:We now turn to the residual autoorrelation funtion �̂(�) obtained by repla-ing �t by �̂t in �(�). Similarly, de�ne the funtion ̂(�) and the vetors ̂m and�̂m. A Taylor expansion of the funtion � 7! n�1Pn�`t=1 �t(�)�t+`(�) around�̂n and �0 gives ̂(`) oP (1)= (`) + 0̀ (�̂n � �0), where` = E�t�` ��t�� (�0) = �E �t�`�t(�0) ��mt�� (�0) + �t2�t(�0) ��2t�� (�0)�= �E �t�`�t(�0) �mt�� (�0):Using (3) and the notation Cm = (1 2 � � � m), it follows that:pn̂m L! N �0;�̂m	as n ! 1, where �̂m = Im + C0m� �̂nCm + C0m��̂n�m + � 0̂�n�mCm:Some simpli�ations are possible. First, we note that ��̂n�m = �2J�1Cm+�3J�1Dm, where Dm = (d1 d2 � � � dm) and d` = E�t�`��2t ��2t (�0)=��.Thus, the asymptoti ovariane matrix an be written as:�̂m = Im +C 0mJ�1IJ�1Cm � 4C 0mJ�1Cm+�3 �C0mJ�1Dm +D0mJ�1Cm� : (4)Sine ̂(0) = 1 + oP (1), the asymptoti distribution of the residual autoor-relations follows easily: pn�̂m L! N �0;��̂m	 ; (5)where ��̂m = �̂m . One an de�ne empirial estimates Ĉm and D̂m byreplaing ` and d` in Cm and Dm bŷ` = � 1n nXt=`+1 �̂t�`�t(�̂n) �mt�� (�̂n) and d̂` = 1n nXt=`+1 �̂t�`�2t (�̂n) ��2t�� (�̂n):We then obtain an estimator �̂�̂m of ��̂m by replaing �3 and the matriesI , J , Cm and Dm by their empirial ounterparts in (4).



6 Duhesne, P. and Franq, C.3 Classial portmanteau tests3.1 Box-Piere-Ljung test statistisFor heking the adequay of an ARMA(p; q) model, it is ustomary to employthe so-alled portmanteau tests, suh as the Box-Piere-Ljung test statistiQBPLm = n(n + 2)Pmi=1 �̂2(i)=(n � i). When diagnosing ARMA models, thenull hypothesis of an ARMA(p; q) model is rejeted at the nominal level �when QBPLm > �2m�(p+q)(1� �), where m > p+ q and �2̀(1� �) denotes the(1� �)-quantile of a �2 distribution with ` degrees of freedom.More generally, when the onditional mean m�0(�) and the onditionalvariane ��0(�) are well spei�ed in (1), the residual autoorrelations �̂(h)are expeted to be lose to zero for all h 6= 0. Therefore, it is natural to rejetthe null hypothesis H0 that the data generating proess (DGP) is the model(1) when kpn�̂mk2 is larger than a ertain ritial value. More preisely, (5)shows that, under the null hypothesis H0 of model adequay:QBPLm L! mXi=1 �iZ2i as n!1; (6)where Z1; : : : ;Zm orrespond to independent N (0; 1) random variables and�1; : : : ; �m represent the eigenvalues of ��̂m . For an ARMA(p; q) model withiid errors, it is shown in MLeod (1978) that the p + q smallest eigenvalues�i are lose to zero and that the other eigenvalues are equal to one. Thus, weobtain a �2m�s approximation, where s = p + q is the number of estimatedparameters, for the asymptoti distribution of QBPLm when the DGP is anARMA (p; q) model with iid errors.When the errors are unorrelated but not independent, and when theARMA oeÆients are estimated by least squares, it is shown in Franq,Roy and Zako��an (2005) that the asymptoti distribution of QBPLm is poorlyapproximated by the hi-square distribution �2m�s.In this paper, the framework is di�erent from the one onsidered inFranq, Roy and Zako��an (2005): here, a more general model is permittedthan the lassial ARMA model. However, in the present set-up, the errorproess f�tg is assumed to be iid and the error term in (1) represents amartingale di�erene sequene.It is lear that all the eigenvalues of the matrix ��̂m are positive andthat, when �3 = 0 and m > s, at least m � s of its eigenvalues are equalto one. When �3 = 0 and m > s, we then have limn!1 P (QBPLm > x) �P (�2m�s > x): Consequently, the test statisti de�ned by the ritial regionfQBPLm > �2m�s(1� �)g is expeted to be liberal at the nominal level �. Inthe sequel, this test statisti will be referred to as the �2m�s-based (BPL�2m�s)Box-Piere-Ljung portmanteau test statisti.It is possible to evaluate the distribution of the Gaussian quadrati formin (6) by means of Imhof's algorithm. Following Franq, Roy and Zako��an



On Diagnosti Cheking Time Series Models 7(2005), one an thus propose a modi�ed portmanteau test statisti based onthe following steps: 1) ompute the eigenvalues �̂1; : : : ; �̂m of a onsistentestimator �̂�̂m of ��̂m , 2) evaluate the (1 � �)-quantile �(�̂1; : : : ; �̂m) ofPmi=1 �̂iZ2i using Imhof's algorithm, 3) rejet the null that the DGP is (1)when n�̂0m�̂m � �(�̂1; : : : ; �̂m). For further referene, this test statisti willbe referred to as the Imhof-based (BPLImhof ) Box-Piere-Ljung portmanteautest statisti. Compared to the BPL�2m�s method, the BPLImhof version isasymptotially more aurate (sine the �2m�s distribution is only a rudeapproximation of the true asymptoti distribution), but the BPLImhof teststatisti is relatively more involved to implement sine an estimator of ��̂mis required, and Imhof's algorithm must be implemented, whih is relativelyompliated and may be time onsuming. Setion 4 below proposes alterna-tives to BPL�2m�s and BPLImhof portmanteau test statistis.3.2 An exampleThe autoregressive (AR) and the autoregressive onditional heterosedasti(ARCH) models are among the most widely used models for the onditionalmean and onditional variane. We ombine the simplest versions of thesetwo models to obtain the AR(1)-ARCH(1) model:�Yt = a0Yt�1 + �t;�t = �t�t; �2t = !0 + �0�2t�1: (7)Under very general assumptions, Assumption A holds true (see Franq andZako��an (2004), who disuss Assumption A in the framework of ARMA-GARCH models). The unknown parameter is �0 = (a0; !0; �0). In order tobe able to ompute expliitly the information matries I and J , we assume�0 = 0. We then have:�`t(�0)�� = �2 �tp!0 0�Yt�100 1A+ (1� �2t ) 1!0 0� 01�2t�11Aand �2`t(�0)����0 = 0BBB� 2Y 2t�1!0 2�tYt�1!3=20 2�tYt�1�2t�1!3=20 + 2(�2t�1)�t�1Yt�2!0� 2�2t�1!20 (2�2t�1)�2t�1!20� � (2�2t�1)�4t�1!20 1CCCA :Thus we have: I = Var �`t(�0)�� = 0B� 41�a20 0 2�230 �4�1!20 �4�1!02�23 �4�1!0 �4(�4 � 1)1CA ;



8 Duhesne, P. and Franq, C.J = E�2`t(�0)����0 = 0B� 21�a20 0 00 1!20 1!00 1!0 �41CAand ��̂n = 0BB� 1� a20 �!0�23(1�a20)�4�1 �23(1�a20)�4�1�!0�23(1�a20)�4�1 !20�4 �!0�23(1�a20)�4�1 �!0 1 1CCA :Note that, when �t � N (0; 1), we have I = 2J and ��̂n = 2J�1. We alsohave Cm = ��1 a0 : : : am�1002�m � ; Dm = � 02�m�3 00m�1� :Note that D0mJ�1Cm = 0, J�1Cm = Cm(1�a20)=2 and I Cm = Cm4=(1�a20) + 2�33C�m, where C�m is obtained by permuting the rows 1 and 3 of Cm,so that C0mC�m = 0. It follows that�̂m = Im � (1� a20)C 0mCm:When m is large or a0 is lose to 0, �̂m ' Im � C 0m �CmC 0m��1Cm islose to a projetion matrix with m � 1 eigenvalues equal to 1, and oneeigenvalue equals to 0. Therefore, in this partiular situation where �0 = 0,the asymptoti distribution of the Box-Piere-Ljung test statistis an beapproximated by a �2m�1 distribution. Note that this is not the approximationusually employed in the ARMA ase, namely the �2m�s where s is the numberof estimated parameters.3.3 Test statisti based on a proposal of Li (1992)Assume ��̂m to be non-singular. A natural approah onsidered by Li (1992,2004) in non-linear time series with independent errors onsists to de�ne thefollowing test statisti: QINVm = n�̂0m�̂�1�̂m �̂m; (8)whih follows asymptotially a �2m distribution under the null hypothesisH0 that the DGP satis�es (1), provided �̂�̂m orresponds to a onsistentestimator of the nonsingular matrix ��̂m .However, as suggested by the example of the preeding setion, the matrix��̂m is not invertible in the ARMA ase and onditions whih guaranty theinvertibility of that asymptoti matrix seem diÆult to �nd. If ��̂m is sin-gular, this invalidates the asymptoti �2m distribution. In pratie, numerialinstability is expeted in the omputation of QINVm when ��̂m is singular.In the next setion, we investigate the use of several generalized inversesof the matrix �̂�̂m . Basi results on generalized inverses are reviewed in thenext setion.



On Diagnosti Cheking Time Series Models 94 Modi�ed portmanteau tests using generalizedinverses and f2g-inverses4.1 Generalized inverses and f2g-inversesA generalized inverse (g-inverse) of a matrix � is a matrix ~� satisfying� ~�� = �. Usually this ondition is the �rst of the four onditions de�n-ing the (unique) Moore-Penrose inverse of �, and ~� is alled a f1g-inverse(Getson and Hsuan (1988)). On the other hand, a f2g-inverse of � is anymatrix �� satisfying the seond relation de�ning the Moore-Penrose in-verse of �, that is ����� = ��. When both requirements are satis�ed,the resulting matrix is sometimes alled a reexive g-inverse or a f1; 2g-inverse (Rao (1973, p. 25)). Let � 6= 0 be a positive semide�nite sym-metri matrix of order m, with eigenvalues �1 � �2 � � � � � �m � 0.The spetral deomposition of � is � = P�P 0 = Pmi=1 �iviv0i, where� = diag(�1; : : : ; �m) and the olumns v1; : : : ;vm of the matrix P onstitutean orthonormal basis of Rm . If �m�s > 0 and �m�s+1 = � � � = �m = 0,then the matrix �� = P��P 0 where �� = diag(��11 ; : : : ; ��1m�s;00s) isthe Moore-Penrose inverse (or pseudo-inverse) of �. For k = 1; : : : ;m � s,let the matrix ��k = P��kP 0 where ��k = diag(��11 ; : : : ; ��1k ;00m�k):The matrix ��k is always a f2g-inverse, but this is not a g-inverse of �when k < m � s. Now suppose that Z � N (0m;�). Then, using nat-ural notations, we have ��k1=2P 0Z � N �0m; diag(10k;00m�k)	 and thusZ 0��kZ = k��k1=2P 0Zk2 � �2k. Now suppose that Zn L! N (0m;�) and�n ! � in probability, as n ! 1. For k = 1; : : : ; rank(�), the matrix��k exists and an be approximated by ��kn , for all large enough n (Note,however, that the matries ��k and ��kn are not unique, beause they de-pend on the partiular hoie of the orthonormal basis in the deompositions� = P�P 0 and �n = P n�nP 0n). Using the ontinuity property of theeigenvalues and eigenprojetions (see Tyler (1981)), it an be shown that:Z 0n��kn Zn L! �2k; 8k � rank(�): (9)The ondition k � rank(�) appears to be essential: for example, take:�n = P n�nP 0n; �n = � 1 00 1n � ; P n = 0� q 1n �qn�1nqn�1n q 1n 1A ;and Zn � N ��00� ;� n 00 1�� ;  � 0:Then Zn L! N (02;�) and �n ! � with � = diag(0; 1), but Z 0n��2n Zn �(+ n2 � n )Z21 + (2� 1n )Z22 L6! �22: In the next subsetion, test statistis willbe onstruted, relying on an appropriate estimator of the Moore-Penroseinverse, and on estimators of the f2g-inverses onsidered in this setion.



10 Duhesne, P. and Franq, C.4.2 Generalized portmanteau test statistisConsider a onsistent estimator �̂�̂m of the matrix ��̂m . Sine ��̂m in (5)may be singular, one an propose:QMPm = n�̂0m�̂�̂�m �̂m; (10)where �̂�̂�m is an estimator of the Moore-Penrose inverse of ��̂m . At thenominal level �, the null hypothesis H0 that the DGP follows a nonlinearmodel of the form (1) is rejeted when QMPm > �2kn(1 � �), with kn thenumber of eigenvalues of �̂�̂m larger that a ertain tolerane � (e.g, � =sqrt(.Mahine$double.eps) = 1:49 � 10�8 with the R software). In viewof (5) and (9), test statistis relying on estimators �̂�k�̂m of the f2g-inverses��k�̂m introdued in Setion 4.1 an be proposed. For k 2 f1; : : : ;mg �xed,they are de�ned by: Q�km = n�̂0m�̂�k�̂m �̂m: (11)At the nominal level �, the null hypothesis H0 is rejeted when Q�km >�2k(1 � �). The test statistis (10) and (11) onstitute interesting alterna-tives to BPLImhof ; they do not require the use of Imhof's algorithm. How-ever, the range of appliation of the test statistis relying on f2g-inverses ismore limited beause the test statisti Q�km presumes the assumption thatrank(��̂m) � k. The range of appliation of the Q�km -test dereases as kinreases from one to m. The test obtained with k = m, whih is atuallythat based on Q�mm = QINVm , that is the test statisti proposed by Li (1992),is the most restritive one, in the sense that the invertibility of ��̂m is re-quired. On the other hand, the set of the alternatives for whih the Q�km -testis onsistent should inrease with k: under appropriate regularity onditionsn�1Q�1m ! ��11 (�0mv1)2 with probability one as n!1. Thus, the Q�1m -testshould not have muh power against alternatives suh that �0mv1 = 0. Thenext setion provides an empirial omparison of the di�erent test statistis.5 Numerial illustrationsHere, we ompare empirially the following portmanteau tests: BPLImhofand the liberal test statisti BPL�2m�s desribed in Setion 3.1, BPL�2m�1advoated in Setion 3.2, and the test statistis QMPm (with � = 1:49� 10�8)and Q�km introdued in Setion 4.2; QINVm = Q�mm of Setion 3.3 is inluded inour experiments. We onentrate on the asem = 4, whih leads to omparingeight tests. In a �rst set of Monte Carlo experiments, N = 1000 independenttrajetories of the AR(1)-ARCH(1) model (7) are simulated. The lengths ofthe trajetories are n = 200; 2000. The ode is written in R and FORTRAN.Table 1 displays the empirial sizes. For the nominal level � = 5%, theempirial size over the N = 1000 independent repliations should belong to



On Diagnosti Cheking Time Series Models 11Table 1. Empirial size of portmanteau tests: relative frequenies (in %) of rejetionof the AR(1)-ARCH(1) model (7), when the DGP follows the same model. Thenumber of repliations is N = 1000.Model n � BPL�2m�1 BPL�2m�s Q�14 Q�24 Q�34 Q�44 QMP4 BPLImhof1% 1.0 7.3 0.5 0.6 1.0 1.0 1.2 1.0I 200 5% 4.2 24.9 4.1 2.7 4.0 2.9 3.7 3.710% 8.3 40.1 8.3 8.2 8.0 4.8 6.8 7.91% 1.0 9.1 1.2 1.0 1.0 1.3 1.2 1.0I 2000 5% 5.9 26.9 5.3 4.8 5.9 3.6 6.3 5.910% 10.9 44.1 9.1 9.6 10.9 7.2 9.9 10.71% 1.2 9.6 0.6 0.6 0.5 0.9 0.9 0.8II 200 5% 5.1 31.3 4.3 3.4 3.1 3.3 3.3 3.310% 11.7 48.7 8.7 7.8 6.9 6.8 6.8 6.21% 1.6 16.0 0.8 1.2 0.9 0.8 0.8 0.8II 2000 5% 9.8 38.9 5.2 5.0 5.1 5.0 5.0 4.510% 18.0 58.9 10.7 10.5 10.4 12.1 12.1 12.0I: Model (7) with a0 = 0, !0 = 1 and �0 = 0II: Model (7) with a0 = 0:95, !0 = 1 and �0 = 0:55Table 2. Empirial power of portmanteau tests: relative frequenies (in %) of reje-tion of the AR(1)-ARCH(1) model (7), when the DGP follows an AR(3)-ARCH(1)model (model III) or an AR(1)-ARCH(3) model (model IV).Model n � Q�14 Q�24 Q�34 Q�44 QMP4 BPLImhof1% 20.0 31.2 38.4 29.2 32.2 38.3III 200 5% 36.1 53.2 65.3 52.6 57.0 65.810% 46.3 64.2 75.4 63.4 67.7 75.31% 35.6 61.0 80.8 71.4 73.9 81.2III 400 5% 49.5 73.4 92.0 84.6 86.0 91.910% 58.7 79.3 95.4 88.7 89.2 95.21% 1.5 3.5 4.7 3.4 4.3 4.4IV 200 5% 6.1 8.8 10.0 8.4 9.5 8.810% 11.1 14.1 16.5 11.3 14.9 14.91% 2.7 5.8 7.6 6.4 7.7 7.4IV 400 5% 8.3 13.5 15.3 11.3 13.8 14.510% 13.9 20.9 22.7 16.2 19.9 21.4III: Yt = 0:2Yt�3 + �t where �2t =q1 + 0:2�2t�1�tIV: Yt = 0:2Yt�1 + �t where �2t =q1 + 0:5�2t�3�tthe interval [3.6%, 6.4%℄ with probability 95%. When the relative rejetionfrequenies are outside the 95% signi�ant limits, they are displayed in boldin Table 1. When the relative rejetion frequenies are outside the 99% signif-iant limits [3.2%, 6.9%℄, they are underlined. It an be seen that: 1) the re-



12 Duhesne, P. and Franq, C.jetion frequeny of BPL�2m�s is de�nitely too high, 2) as expeted, BPL�2m�1works well when a0 = 0 and �0 = 0, but not when a0 6= 0 or �0 6= 0, 3) theempirial levels of Q�44 = QINV4 are far from the nominal levels for Model I,whih is explained by the singularity of ��m , 4) the errors of the �rst kindof the test statistis QMP4 , Q�k4 , k < 4, and BPLImhof are well ontrolledwhen n is large. Table 2 ompares the empirial powers, exluding BPL�2m�sand BPL�2m�1 , whih display unsatisfatory empirial levels. Note that mis-spei�ation of the onditional mean (model III) seems easier to detet thanmisspei�ation of the onditional variane (model IV). As expeted, thepower of Q�km is funtion of k. From Table 2, Q�34 and BPLImhof are themost powerful portmanteau test statistis, at least in our experiments. Inter-estingly, QMP4 o�ers an empirial power very lose to the one of BPLImhof ,and slightly better than the one of Q�44 . In general, BPLImhof seems to beadvisable in view of its good theoretial and �nite sample performane, butgiven its omputational simpliity, QMP4 appears to be a lose ompetitor.ReferenesFRANCQ, C., ROY, R. and ZAKO�IAN, J.-M. (2005): Diagnosti heking inARMA models with unorrelated errors. Journal of the Amerian StatistialAssoiation 100, 532-544.FRANCQ, C. and ZAKO�IAN, J.-M. (2004): Maximum likelihood estimation ofpure GARCH and ARMA-GARCH proesses. Bernoulli 10, 605-637.GETSON, A. J. and HSUAN, F. C. (1988): f 2 g-Inverses and Their StatistialAppliation. Leture Notes in Statistis 47, Springer-Verlag, New York.GRANGER, C. W. J. and TER�ASVIRTA, T. (1993): Modelling Nonlinear Eo-nomi Relationships. Oxford University Press, Oxford.IMHOF, J. P. (1961): Computing the distribution of quadrati forms in normalvariables. Biometrika 48, 419-426.KLIMKO, L. A. and NELSON, P. I. (1978): On onditional least squares estimationfor stohasti proesses. The Annals of Statistis 6, 629-642.LI, W. K. (2004): Diagnosti Cheks in Time Series. Chapman & Hall/CRC, NewYork.LI, W. K. (1992): On the asymptoti standard errors of residual autoorrelationsin nonlinear time series modelling. Biometrika 79, 435-437.MCLEOD, A. I. (1978): On the distribution of residual autoorrelations in Box-Jenkins method. Journal of the Royal Statistial Soiety B 40, 296-302.POTSCHER, B. M. and PRUCHA, I. R. (1997): Dynami Nonlinear EonometriModels. Springer, Berlin.RAO, C. R. (1973): Linear Statistial Inferene and Its Appliations. Wiley, NewYork.TANIGUCHI, M. and KAKIZAWA, Y. (2000): Asymptoti Theory of StatistialInferene for Time Series. Springer, New York.TONG, H. (1990): Non-linear Time Series: A Dynamial System Approah. OxfordUniversity Press, Oxford.TYLER, D. E. (1981): Asymptoti inferene for eigenvetors. The Annals of Statis-tis 9, 725-736.


